1
|
Xu W, Sun Y, Jiang Y, Yan X, Gao Z, Wang H, Huang G, Zhou QL, Ye M. Enantioselective Carbonylative Cyclization of Alkenes with C-H Bonds for Synthesis of γ-Lactams Bearing an α-Quaternary Carbon. J Am Chem Soc 2025; 147:96-103. [PMID: 39699579 DOI: 10.1021/jacs.4c15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The development of effective synthetic methods to construct γ-lactams bearing a chiral α-quaternary carbon from relatively inert C(O)-H bonds with alkenes has been an elusive challenge. Herein, we used a naphthylamine-derived phosphine oxide ligating Ni and Al bimetallic catalyst to realize a carbonylative cyclization of formyl C-H bonds with alkenes, highly regio- and enantioselectively constructing γ-lactams bearing a chiral α-quaternary carbon in up to 99% yield and 98% ee. These γ-lactams proved to be versatile synthetic precursors for many biologically active molecules.
Collapse
Affiliation(s)
- Weiwei Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yanan Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yuqing Jiang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Xueyuan Yan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Zhixuan Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haorui Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Guo Y, Wei L, Wen Z, Jiang H, Qi C. Photoredox-catalyzed coupling of aryl sulfonium salts with CO 2 and amines to access O-aryl carbamates. Chem Commun (Camb) 2023; 59:764-767. [PMID: 36541669 DOI: 10.1039/d2cc06033g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient photoredox-catalyzed three-component coupling reaction of aryl sulfonium salts, carbon dioxide and amines has been developed for the first time. This reaction provides a new strategy for the synthesis of a range of valuable O-aryl carbamates from readily available arenes via a site-selective thianthrenation/carbamoyloxylation two-step process. Mild conditions, broad substrate scope and good functional group tolerance are the features of the transformation. The synthetic utility of the method was demonstrated by the late-stage modification of bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Yanhui Guo
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Li Wei
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Zhonglin Wen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
3
|
Traboulsi I, Dange NS, Pirenne V, Robert F, Landais Y. Enantioselective Total Synthesis of (+)‐Eucophylline. Chemistry 2022; 28:e202200088. [DOI: 10.1002/chem.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Iman Traboulsi
- Institute of Molecular Sciences (ISM) Univ. Bordeaux, CNRS, UMR-5255 351 Cours de la Libération 33400 Talence France
| | - Nitin S. Dange
- Institute of Molecular Sciences (ISM) Univ. Bordeaux, CNRS, UMR-5255 351 Cours de la Libération 33400 Talence France
| | - Vincent Pirenne
- Institute of Molecular Sciences (ISM) Univ. Bordeaux, CNRS, UMR-5255 351 Cours de la Libération 33400 Talence France
| | - Frédéric Robert
- Institute of Molecular Sciences (ISM) Univ. Bordeaux, CNRS, UMR-5255 351 Cours de la Libération 33400 Talence France
| | - Yannick Landais
- Institute of Molecular Sciences (ISM) Univ. Bordeaux, CNRS, UMR-5255 351 Cours de la Libération 33400 Talence France
| |
Collapse
|
4
|
Winand L, Schneider P, Kruth S, Greven NJ, Hiller W, Kaiser M, Pietruszka J, Nett M. Mutasynthesis of Physostigmines in Myxococcus xanthus. Org Lett 2021; 23:6563-6567. [PMID: 34355569 DOI: 10.1021/acs.orglett.1c02374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The alkaloid physostigmine is an approved anticholinergic drug and an important lead structure for the development of novel therapeutics. Using a complementary approach that merged chemical synthesis with pathway refactoring, we produced a series of physostigmine analogues with altered specificity and toxicity profiles in the heterologous host Myxococcus xanthus. The compounds that were generated by applying a simple feeding strategy include the promising drug candidate phenserine, which was previously accessible only by total synthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany
| | - Sebastian Kruth
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Nico-Joel Greven
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany.,Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1), Forschungszentrum Jülich, Jülich, 52428 Nordrhein-Westfalen, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| |
Collapse
|
5
|
Fraňová P, Marchalín Š, Šafář P, Cvečko M, Moncol J, Žídeková I, Othman M, Daïch A. Smart and concise entry to chiral spiro[cyclopentane-indolizidine]-tetraol diastereomers as a new aza-spirocyclic framework. NEW J CHEM 2021. [DOI: 10.1039/d1nj02180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of chiral oxacarba-spiroindolizidine tetraols was achieved by alkene cis-dihydroxylation, diol protection, and lactam carbonyl reduction followed ultimately by acetonide deprotection.
Collapse
Affiliation(s)
- Paula Fraňová
- Department of Organic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Štefan Marchalín
- Department of Organic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
- Normandie Univ, UNILEHAVRE, URCOM EA 3221, INC3M CNRS-FR 3038, UFR des Sciences et Techniques, Université Le Havre Normandie, BP: 1123, 25 rue Philipe Lebon, F-76063 Le Havre Cedex, France
| | - Peter Šafář
- Department of Organic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Matej Cvečko
- Department of Organic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical & Food Technology, Slovak University of Technology, Radlinského 9, SK-81237, Bratislava, Slovakia
| | - Ivana Žídeková
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK – 81237 Bratislava, Slovakia
| | - Mohamed Othman
- Normandie Univ, UNILEHAVRE, URCOM EA 3221, INC3M CNRS-FR 3038, UFR des Sciences et Techniques, Université Le Havre Normandie, BP: 1123, 25 rue Philipe Lebon, F-76063 Le Havre Cedex, France
| | - Adam Daïch
- Normandie Univ, UNILEHAVRE, URCOM EA 3221, INC3M CNRS-FR 3038, UFR des Sciences et Techniques, Université Le Havre Normandie, BP: 1123, 25 rue Philipe Lebon, F-76063 Le Havre Cedex, France
| |
Collapse
|
6
|
Inukai T, Kano T, Maruoka K. Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3-Arylpiperidin-2-ones Under Phase-Transfer Conditions. Angew Chem Int Ed Engl 2020; 59:2211-2214. [PMID: 31769914 DOI: 10.1002/anie.201913518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/25/2019] [Indexed: 01/30/2023]
Abstract
A highly enantioselective synthesis of δ-lactams having a chiral quaternary carbon center at the α-position has been developed through an asymmetric alkylation of 3-arylpiperidin-2-ones under phase-transfer conditions. In this transformation, a 2,2-diarylvinyl group on the δ-lactam nitrogen atom plays a crucial role as a novel protecting group and an achiral auxiliary for improving both yield and enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Tomoaki Inukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.,Department of Organocatalytic Chemistry, Graduate School of PharmaceuticalSciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.,Guangdong University of Technology, Guangzhou, 510006, China.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
7
|
Cholewczynski AE, Williams PC, Pierce JG. Stereocontrolled Synthesis of (±)-Melokhanine E via an Intramolecular Formal [3 + 2] Cycloaddition. Org Lett 2020; 22:714-717. [PMID: 31908171 PMCID: PMC7662073 DOI: 10.1021/acs.orglett.9b04546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A convergent sequence to access the indole alkaloid (±)-melokhanine E in 12-steps (8-step longest linear sequence) and an 11% overall yield is reported. The approach utilizes two cyclopropane moieties as reactive precursors to a 1,3-dipole and imine species to enable stereoselective construction of the core scaffold through a formal [3 + 2] cycloaddition. The natural product was evaluated for its antimicrobial activity based on isolation reports; however, no activity was observed. The reported efforts serve as a synthetic platform to prepare an array of alkaloids bearing this core structural motif.
Collapse
Affiliation(s)
- Anna E Cholewczynski
- Department of Chemistry, College of Sciences , NC State University , Raleigh , North Carolina 27695 , United States
| | - Peyton C Williams
- Department of Chemistry, College of Sciences , NC State University , Raleigh , North Carolina 27695 , United States
| | - Joshua G Pierce
- Department of Chemistry, College of Sciences , NC State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
8
|
Inukai T, Kano T, Maruoka K. Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3‐Arylpiperidin‐2‐ones Under Phase‐Transfer Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomoaki Inukai
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo Kyoto 606-8502 Japan
| | - Taichi Kano
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo Kyoto 606-8502 Japan
- Department of Organocatalytic ChemistryGraduate School of PharmaceuticalSciencesKyoto University Sakyo Kyoto 606-8501 Japan
- Guangdong University of Technology Guangzhou 510006 China
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
9
|
Min XL, Xu XR, He Y. Axial-to-Central Chirality Transfer for Construction of Quaternary Stereocenters via Dearomatization of BINOLs. Org Lett 2019; 21:9188-9193. [PMID: 31664848 DOI: 10.1021/acs.orglett.9b03558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All-carbon quaternary stereocenters are versatile building blocks, and their asymmetric construction has attracted much attention. Herein, we disclose an axial-to-central chirality transfer strategy for the synthesis of chiral quaternary stereocenters via dearomatization of (S)-BINOLs. The reaction proceeded smoothly with a wide range of propargyl carbonates to afford chiral spiro-compounds in high yields with excellent enantioselectivities. In addition, the strategy was extended to kinetic resolution of rac-BINOLs albeit with moderate s value.
Collapse
Affiliation(s)
- Xiao-Long Min
- School of Chemical Engineering , Nanjing University of Science & Technology , Nanjing 210094 , China
| | - Xu-Ran Xu
- School of Chemical Engineering , Nanjing University of Science & Technology , Nanjing 210094 , China
| | - Ying He
- School of Chemical Engineering , Nanjing University of Science & Technology , Nanjing 210094 , China
| |
Collapse
|
10
|
Chen Y. Advances in the Synthesis of Methylated Products through Indirect Approaches. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yantao Chen
- Medicinal Chemistry, Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca 43183 Gothenburg Sweden
| |
Collapse
|
11
|
Luo X, Song X, Xiong W, Li J, Li M, Zhu Z, Wei S, Chan ASC, Zou Y. Copper-Catalyzed C–H Carbamoyloxylation of Aryl Carboxamides with CO2 and Amines at Ambient Conditions. Org Lett 2019; 21:2013-2018. [DOI: 10.1021/acs.orglett.9b00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Wenfang Xiong
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People’s Republic of China
| | - Jianheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Mingkang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Zefeng Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Shuxian Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
12
|
Pandey G, Khamrai J, Mishra A, Maity P, Chikkade PK. Iminium ion-enamine cascade reaction enables the asymmetric total syntheses of aspidosperma alkaloids vincadifformine and ervinceine. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Zhu XY, Lv MH, Zhao YN, Lan LY, Li WZ, Xiao LJ. Organocatalytic sulfa-Michael/aldol cascade: constructing functionalized 2,5-dihydrothiophenes bearing a quaternary carbon stereocenter. RSC Adv 2018; 8:34000-34003. [PMID: 35548804 PMCID: PMC9086683 DOI: 10.1039/c8ra04325f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022] Open
Abstract
A practical sulfa-Michael/aldol cascade reaction of 1,4-dithiane-2,5-diol and α-aryl-β-nitroacrylates has been developed, which allows efficient access to functionalized 2,5-dihydrothiophenes bearing a quaternary carbon stereocenter in moderate to good yields with high enantioselectivities.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- College of Applied Chemistry, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Mei-Heng Lv
- College of Applied Chemistry, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Ya-Nan Zhao
- College of Applied Chemistry, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Li-Yan Lan
- College of Applied Chemistry, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Wen-Ze Li
- College of Applied Chemistry, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Lin-Jiu Xiao
- College of Applied Chemistry, Shenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
14
|
Pandey G, Mishra A, Khamrai J. Generation of all carbon quaternary stereocenters at the C-3 carbon of piperidinones and pyrrolidinones and its application in natural product total synthesis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|