1
|
Du S, Huo X, Wang X. Synthesis of the Cyclopentane Core Skeleton of Cranomycin and Jogyamycin. Org Lett 2024; 26:2945-2948. [PMID: 38567811 DOI: 10.1021/acs.orglett.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Cranomycin and jogyamycin, two aminocyclopentitol natural products, possess complex structures and potential medicinal properties. This review describes synthetic studies about the process of making an advanced intermediate of cranomycin and jogyamycin. This highly functionalized intermediate, featuring three contiguous amine-substituted stereocenters, was constructed from cyclopentadiene through a series of reactions including the nitroso Diels-Alder reaction, nitrogen radical cyclization reaction, 1,2-nitrogen migration, and stereoselective nitrogen addition.
Collapse
Affiliation(s)
- Shuo Du
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xing Huo
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Dumoleijn K, Van Den Broeck E, Stavinoha J, Van Speybroeck V, Moonen K, Stevens C. Reductive imino-pinacol coupling reaction of halogenated aromatic imines and iminium ions catalyzed by precious metal catalysts using hydrogen. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Gerstner NC, Nicastri KA, Schomaker JM. Strategien für die Synthese von Pactamycin und Jogyamycin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202004560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nels C. Gerstner
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Kate A. Nicastri
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Jennifer M. Schomaker
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
4
|
Zhang YA, Milkovits A, Agarawal V, Taylor CA, Snyder SA. Total Synthesis of the Meroterpenoid Manginoid A as Fueled by a Challenging Pinacol Coupling and Bicycle-forming Etherification. Angew Chem Int Ed Engl 2021; 60:11127-11132. [PMID: 33644941 DOI: 10.1002/anie.202016178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Indexed: 12/17/2022]
Abstract
The manginoids are a unique collection of bioactive natural products whose structures fuse an oxa-bridged spirocyclohexanedione with a heavily substituted trans-hydrindane framework. Herein, we show that such architectures can be accessed through a strategy combining a challenging pinacol coupling and bicycle-forming etherification with several additional chemo- and regioselective reactions. The success of these key events proved to be highly substrate and condition specific, affording insights for their application to other targets. As a result, not only has a 19-step total synthesis of manginoid A been achieved, but a potential roadmap to access other members of the family and related natural products has also been identified.
Collapse
Affiliation(s)
- Yu-An Zhang
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Amanda Milkovits
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Valay Agarawal
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Cooper A Taylor
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Zhang Y, Milkovits A, Agarawal V, Taylor CA, Snyder SA. Total Synthesis of the Meroterpenoid Manginoid A as Fueled by a Challenging Pinacol Coupling and Bicycle‐forming Etherification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yu‐An Zhang
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Amanda Milkovits
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Valay Agarawal
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Cooper A. Taylor
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Scott A. Snyder
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
6
|
Gerstner NC, Nicastri KA, Schomaker JM. Strategies for the Syntheses of Pactamycin and Jogyamycin. Angew Chem Int Ed Engl 2021; 60:14252-14271. [PMID: 32392399 DOI: 10.1002/anie.202004560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Indexed: 01/24/2023]
Abstract
Pactamycin and jogyamycin are aminocyclopentitol natural products, where each core carbon bears a stereodefined alcohol or amine moiety. Their structural complexity, coupled with the diversity of functional groups coexisting in a condensed space, make them fascinating synthetic targets in their own right. Pactamycin and its derivatives bind to the 30S ribosomal subunit and display activity against parasites responsible for drug-resistant malaria and African sleeping sickness; however, efforts to develop their therapeutic potential have been hampered by their cellular toxicity. Interestingly, bioengineered analogues display differences in selectivity and toxicity towards mammalian cells, spurring efforts to develop flexible strategies to thoroughly probe structure-activity relationships (SAR), particularly in analogues lacking the C7 hydroxyl group of pactamycin. This review compares and contrasts approaches towards pactamycin and jogyamycin, including two successful total syntheses of the former. The implications of each route for preparing analogues to inform SAR and lead to compounds with increased selectivity for binding malarial over human ribosomes are briefly discussed.
Collapse
Affiliation(s)
- Nels C Gerstner
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Kate A Nicastri
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Jing C, Mallah S, Kriemen E, Bennett SH, Fasano V, Lennox AJJ, Hers I, Aggarwal VK. Synthesis, Stability, and Biological Studies of Fluorinated Analogues of Thromboxane A 2. ACS CENTRAL SCIENCE 2020; 6:995-1000. [PMID: 32607446 PMCID: PMC7318075 DOI: 10.1021/acscentsci.0c00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Platelet activation results in the generation of thromboxane A2 (TxA2), which promotes thrombus formation by further amplifying platelet function, as well as causing vasoconstriction. Due to its role in thrombus formation and cardiovascular disease, its production is the target of antiplatelet drugs such as aspirin. However, the study of TxA2-stimulated cellular function has been limited by its instability (t 1/2 = 32 s, pH = 7.4). Although more stable analogues such as U46619 and difluorinated 10,10-F2-TxA2 have been prepared, we targeted a closer mimic to TxA2 itself, monofluorinated 10-F-TxA2, since the number of fluorine atoms can affect function. Key steps in the synthesis of F-TxA2 included α-fluorination of a lactone bearing a β-alkoxy group, and a novel synthesis of the strained acetal. F-TxA2 was found to be 105 more stable than TxA2, and surprisingly was only slightly less stable than F2-TxA2. Preliminary biological studies showed that F-TxA2 has similar potency as TxA2 toward inducing platelet aggregation but was superior to F2-TxA2 in activating integrin αIIbβ3.
Collapse
Affiliation(s)
- Changcheng Jing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Shahida Mallah
- School
of Physiology, Pharmacology & Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Ella Kriemen
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Steven H. Bennett
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Valerio Fasano
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Alastair J. J. Lennox
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Ingeborg Hers
- School
of Physiology, Pharmacology & Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, United Kingdom
| | - Varinder K. Aggarwal
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
8
|
|
9
|
Upadhyay C, Chaudhary M, De Oliveira RN, Borbas A, Kempaiah P, Singh P, Rathi B. Fluorinated scaffolds for antimalarial drug discovery. Expert Opin Drug Discov 2020; 15:705-718. [PMID: 32202162 DOI: 10.1080/17460441.2020.1740203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The unique physicochemical properties and chemical diversity of organofluorine compounds have remarkably contributed for their wide utility in the area of pharmaceuticals, materials and agrochemicals. The noteworthy characteristics of fluorine include high electron affinity, lipophilicity and bioavailability, extending the half-life of the drugs. The incorporation of fluorine substituents, particularly trifluoromethyl groups, into organic molecules has led to their high potency against various diseases, including malaria. Hence, organofluorinated molecules offer valuable avenues for the design of new drug candidates against malaria. AREAS COVERED In this review, the authors discuss the importance of fluorine substituents present in the chemical compounds, and their potential applications for antimalarial drug discovery. EXPERT OPINION Fluorinated molecules represent a reliable strategy to develop new antimalarial drugs. Fluorine or fluorinated groups have been identified as a promising precursor, and their presence in approximately twenty-five percent of approved drugs is notable. Selective fluorination of chemical entities has the potential to be applied not only to improve the activity profile against the malaria parasite, but could be extrapolated for favorable pharmacological applications. Hazardous reagents such as HF, F2 and SF4 used for fluorination, are not considered as safe, and therefore, this process remains challenging, particularly for the pharmaceutical industry.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Monika Chaudhary
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| | - Ronaldo N De Oliveira
- Laboratory of Synthesis of Bioactive Compounds, Department of Chemistry, Federal Rural University of Pernambuco , Recife, Brazil
| | - Aniko Borbas
- Department of Pharmaceutical Chemistry, University of Debrecen , Debrecen, Hungary
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Stritch School of Medicine , Chicago, USA
| | - Poonam Singh
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| |
Collapse
|
10
|
Gerstner NC, Schomaker JM. Stereocontrolled Synthesis of the Aminocyclopentitol Core of Jogyamycin via an Ichikawa Rearrangement Reaction. J Org Chem 2019; 84:14092-14100. [PMID: 31578059 DOI: 10.1021/acs.joc.9b02249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Jogyamycin is a member of the aminocyclopentitol class of natural products that exhibits significant antiprotozoal activities against diseases that include African sleeping sickness and malaria. Herein, we report a route to the core of this natural product via an underutilized Ichikawa rearrangement as a key step. This route efficiently forms the cyclopentane ring from simple and easily accessible starting materials and rapidly installs the C1/C4/C5 polar functional groups. In addition, this strategy shows excellent potential for the preparation of analogues of jogyamycin to study how structural changes impact the selectivity in binding to the ribosome.
Collapse
Affiliation(s)
- Nels C Gerstner
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Jennifer M Schomaker
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
11
|
Kudo F, Zhang J, Sato S, Hirayama A, Eguchi T. Functional Characterization of 3-Aminobenzoic Acid Adenylation Enzyme PctU and UDP-N-Acetyl-d-Glucosamine: 3-Aminobenzoyl-ACP Glycosyltransferase PctL in Pactamycin Biosynthesis. Chembiochem 2019; 20:2458-2462. [PMID: 31059166 DOI: 10.1002/cbic.201900239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Pactamycin is an antibiotic produced by Streptomyces pactum with antitumor and antimalarial properties. Pactamycin has a unique aminocyclitol core that is decorated with 3-aminoacetophenone, 6-methylsaliciate, and an N,N-dimethylcarbamoyl group. Herein, we show that the adenylation enzyme PctU activates 3-aminobenzoic acid (3ABA) with adenosine triphosphate and ligates it to the holo form of the discrete acyl carrier protein PctK to yield 3ABA-PctK. Then, 3ABA-PctK is N-glycosylated with uridine diphosphate-N-acetyl-d-glucosamine (UDP-GlcNAc) by the glycosyltransferase PctL to yield GlcNAc-3ABA-PctK. Because 3ABA is known to be a precursor of the 3-aminoacetophenone moiety, PctU appears to be a gatekeeper that selects the appropriate 3-aminobenzoate starter unit. Overall, we propose that acyl carrier protein-bound glycosylated 3ABA derivatives are biosynthetic intermediates of pactamycin biosynthesis.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Jiahao Zhang
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shusuke Sato
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Akane Hirayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|