1
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Mazzarella D, Qi C, Vanzella M, Sartorel A, Pelosi G, Dell'Amico L. Electrochemical Asymmetric Radical Functionalization of Aldehydes Enabled by a Redox Shuttle. Angew Chem Int Ed Engl 2024; 63:e202401361. [PMID: 38623693 DOI: 10.1002/anie.202401361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/17/2024]
Abstract
Aminocatalysis is a well-established tool that enables the production of enantioenriched compounds under mild conditions. Its versatility is underscored by its seamless integration with various synthetic approaches. While the combination of aminocatalysis with metal catalysis, photochemistry, and stoichiometric oxidants has been extensively explored, its synergy with electrochemical activation remains largely unexplored. Herein, we present the successful merger of electrochemistry and aminocatalysis to perform SOMO-type transformations, expanding the toolkit for asymmetric electrochemical synthesis. The methodology harnesses electricity to drive the oxidation of catalytically generated enamines, which ultimately partake in enantioselective radical processes, leading to α-alkylated aldehydes. Crucially, mechanistic studies highlight how this electrochemical strategy is enabled by the use of a redox shuttle, 4,4'-dimethoxybiphenyl, to prevent catalyst degradation and furnishing the coveted compounds in good yield and high enantioselectivity.
Collapse
Affiliation(s)
- Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Chun Qi
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Michael Vanzella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17, 43124, Parma, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
3
|
Su J, Guo W, Liu Y, Kong L, Zheng H, Zhu G. Cu-catalyzed cascade difluoroalkylation/5- endo cyclization/β-fluorine cleavage of ynones. Chem Commun (Camb) 2023; 59:1821-1824. [PMID: 36722869 DOI: 10.1039/d2cc06068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A copper-catalyzed, redox-neutral cascade difluoroalkylation/5-endo annulation/β-fluorine cleavage of ynones is developed, providing a direct and stereoselective method to access synthetically important α-monofluoroalkenyl cyclopentanones. Mechanistic studies suggest an unprecedented CuII-assisted β-fluorine fragmentation, which may be valuable for the challenging but important C-F bond activation. Moreover, the in situ generated difluorocarbene was found to serve as an effective reductant for the regeneration of copper(I) catalyst, thus avoiding the addition of external reductants.
Collapse
Affiliation(s)
- Jingwen Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Wenbin Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yi Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
4
|
Huang QP, Li WP, Li R, Zhao L, Wang HY, Li X, Wang P, He CY. Visible-light Promoted Cross-coupling of Ethyl Iododifluoroacetate with Silyl Enol Ethers for the Synthesis of β-Fluoroenones via Noncovalent Interactions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Yang Z, Chen L, Sun Q, Guo M, Wang G, Zhao W, Tang X. Tetrahydroxydiboron and Nickel Chloride Cocatalyzed Rapid Radical Cyclization toward Pyrrolizidine and Indolizidine Alkaloids. J Org Chem 2022; 87:3788-3793. [PMID: 35188782 DOI: 10.1021/acs.joc.1c02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel tetrahydroxydiboron and nickel chloride cocatalyzed radical cyclization cascade with a broad substrate scope and an ultrashort reaction time was developed. The mechanistic investigation indicated that the reaction might involve a homocleavage of tetrahydroxydiboron and nickel hydride intermediates. This approach enables the simple and efficient synthesis of a series of heteropolycycles.
Collapse
Affiliation(s)
- Zequn Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Longhui Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Qi Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
6
|
Ma N, Guo L, Shen ZJ, Qi D, Yang C, Xia W. Cascade Cyclization for the Synthesis of Indolo[2,1-α]isoquinoline Derivatives via Visible-Light-Induced Halogen-Atom-Transfer (XAT) and Hydrogen-Atom-Transfer (HAT). Org Biomol Chem 2022; 20:1731-1737. [DOI: 10.1039/d1ob02480a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition metal-free photoredox cascade cyclization is herein reported. In this protocol, sustainable visible light was used as energy source and organic light-emitting molecule Eosin Y served as efficient photocatalyst....
Collapse
|
7
|
Li W, Liu R, Li R, Wang S, Li D, Yang J. Catalyst‐Free and Oxidant‐Free Cascade Difluoroalkylation and Controllable C−F Bond Activation of Aryl Enol Acetates for the Synthesis of β‐Fluoroenones and β‐Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenshuang Li
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Ruyan Liu
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Ruonan Li
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Shihaozhi Wang
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Dianjun Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| |
Collapse
|
8
|
Schnell SD, González JA, Sklyaruk J, Linden A, Gademann K. Boron Trifluoride-Mediated Cycloaddition of 3-Bromotetrazine and Silyl Enol Ethers: Synthesis of 3-Bromo-pyridazines. J Org Chem 2021; 86:12008-12023. [PMID: 34342995 DOI: 10.1021/acs.joc.1c01384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pyridazines are important scaffolds for medicinal chemistry or crop protection agents, yet the selective preparation of 3-bromo-pyridazines with high regiocontrol remains difficult. We achieved the Lewis acid-mediated inverse electron demand Diels-Alder reaction between 3-monosubstituted s-tetrazine and silyl enol ethers and obtained functionalized pyridazines. In the case of 1-monosubstituted silyl enol ethers, exclusive regioselectivity was observed. Downstream functionalization of the resulting 3-bromo-pyridazines was demonstrated utilizing several cross-coupling protocols to synthesize 3,4-disubstituted pyridazines with excellent control over the substitution pattern.
Collapse
Affiliation(s)
- Simon D Schnell
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jan Sklyaruk
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Ma Y, Chen Y, Lv L, Li Z. Regioselective Synthesis of Emission Color‐Tunable Pyrazolo[1,5‐a]pyrimidines with β,β‐Difluoro Peroxides as 1,3‐Bis‐Electrophiles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yangyang Ma
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Yuanjin Chen
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
- College of Chemistry Peking University Beijing 100871 People's Republic of China
| | - Leiyang Lv
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Zhiping Li
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| |
Collapse
|
10
|
Li Y, Sun N, Zhang C, Hao M. Base‐Promoted
Formylation and
N
‐Difluoromethylation
of Azaindoles with Ethyl Bromodifluoroacetate as a Carbon Source. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Ning Sun
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Cai‐Lin Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Meng Hao
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| |
Collapse
|
11
|
Zhang Z, Li X, Shi D. Visible‐Light‐Promoted Oxy‐difluoroalkylation of Aryl Alkynes for the Synthesis of
β
‐Fluoroenones and
α
‐Difluoroalkyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology 168 Wenhai Road Qingdao 266237 Shandong People's Republic of China
| |
Collapse
|
12
|
Zhou S, Sun ZY, Zhu K, Zhao W, Tang X, Guo M, Wang G. Metal-Free Difunctionalization of Pyridines: Selective Construction of N-CF 2H and N-CHO Dihydropyridines. Org Lett 2021; 23:2205-2211. [PMID: 33635677 DOI: 10.1021/acs.orglett.1c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kongying Zhu
- Nuclear Magnetic Resonance Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Zhao K, Guo JY, Guan T, Wang YX, Tao JY, Zhang Y, Zhang QH, Ni K, Loh TP. Photoinitiated stereoselective direct C(sp 2)–H perfluoroalkylation and difluoroacetylation of enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00605c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinitiated regio- and stereoselective C(sp2)–H perfluoroalkylation and difluoroacetylation of enamides are developed, furnishing biologically and physiologically privileged fluoro-containing enamide scaffolds.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Jing-Yu Guo
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ting Guan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ying-Xue Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ji-Yu Tao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yu Zhang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Qing-Hong Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Kun Ni
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
14
|
Hou X, Zhou S, Li Y, Guo M, Zhao W, Tang X, Wang G. Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Org Lett 2020; 22:9313-9318. [DOI: 10.1021/acs.orglett.0c03540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yuli Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Sun ZY, Zhou S, Yang K, Guo M, Zhao W, Tang X, Wang G. Tetrahydroxydiboron-Promoted Radical Addition of Alkynols. Org Lett 2020; 22:6214-6219. [DOI: 10.1021/acs.orglett.0c02367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
16
|
Ma Y, Chen Y, Lou C, Li Z. DABCO‐Mediated [4+1] Cycloaddition of β,β‐Dihalo Peroxides with Sodium Azide toward Isoxazoles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yangyang Ma
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Yuanjin Chen
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Chenhao Lou
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Zhiping Li
- Department of ChemistryRenmin University of China Beijing 100872 China
| |
Collapse
|
17
|
Li K, Chen J, Yang C, Zhang K, Pan C, Fan B. Blue Light Promoted Difluoroalkylation of Aryl Ketones: Synthesis of Quaternary Alkyl Difluorides and Tetrasubstituted Monofluoroalkenes. Org Lett 2020; 22:4261-4265. [DOI: 10.1021/acs.orglett.0c01294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangkui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Chunhui Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Keyang Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Chunxiang Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| | - Baomin Fan
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650031, Yunnan China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan China
| |
Collapse
|
18
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
19
|
Ye F, Zhang S, Wei Z, Weniger F, Spannenberg A, Taeschler C, Ellinger S, Jiao H, Neumann H, Beller M. Versatile Fluorinated Building Blocks by Stereoselective (Per)fluoroalkenylation of Ketones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fei Ye
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; 311121 Hangzhou China
| | - Shaoke Zhang
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Florian Weniger
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | | | | | - Haijun Jiao
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
20
|
Wang X, Hu J, Ren J, Wu T, Wu J, Wu F. Palladium-catalyzed one-pot construction of difluorinated 1,3-enynes from α,α,α-iododifluoroacetones and alkynes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Goliszewska K, Rybicka-Jasińska K, Szurmak J, Gryko D. Visible-Light-Mediated Amination of π-Nucleophiles with N-Aminopyridinium Salts. J Org Chem 2019; 84:15834-15844. [DOI: 10.1021/acs.joc.9b02073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katarzyna Goliszewska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jakub Szurmak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
22
|
Neff RK, Su YL, Liu S, Rosado M, Zhang X, Doyle MP. Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. J Am Chem Soc 2019; 141:16643-16650. [DOI: 10.1021/jacs.9b05921] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robynne K. Neff
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Melina Rosado
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
23
|
Liang J, Han J, Wu J, Wu P, Hu J, Hu F, Wu F. Nickel-Catalyzed Coupling Reaction of α-Bromo-α-fluoroketones with Arylboronic Acids toward the Synthesis of α-Fluoroketones. Org Lett 2019; 21:6844-6849. [PMID: 31411478 DOI: 10.1021/acs.orglett.9b02474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A nickel-catalyzed coupling reaction of α-bromo-α-fluoroketones with arylboronic acids was reported, which provides an efficient pathway to access 2-fluoro-1,2-diarylethanones in high yields. We also disclosed the synthesis of the monofluorination agents α-bromo-α-fluoroketones by using a trifluoroacetate release protocol. Mechanistic investigation indicated that a monofluoroalkyl radical is involved in the catalytic circle. Moreover, an important medical intermediate of flindokalner was synthesized via a nickel-catalyzed coupling reaction of α-bromo-α-fluoro-2-indolone and boronic ester.
Collapse
Affiliation(s)
- Junqing Liang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Jie Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Pingjie Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Jian Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Feng Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| |
Collapse
|
24
|
Chen Y, Li L, He X, Li Z. Four-Component Reactions for the Synthesis of Perfluoroalkyl Isoxazoles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liangkui Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiao He
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
25
|
Li L, Ma Y, Tang M, Guo J, Yang Z, Yan Y, Ma X, Tang L. Photoredox‐Catalyzed Oxydifluoroalkylation of Styrenes for Access to Difluorinated Ketones with DMSO as an Oxidant. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900521] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lixin Li
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Yan‐Na Ma
- College of Chemistry and Chemical EngineeringHenan Normal University Xinxiang 453000 People's Republic of China
| | - Mi Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Jing Guo
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Zhen Yang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Yizhe Yan
- School of Food and Biological EngineeringZhengzhou University of Light Industry Zhengzhou 450000 People's Republic of China
| | - Xiantao Ma
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| | - Lin Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 People's Republic of China
| |
Collapse
|
26
|
Wang J, Ogawa Y, Shibata N. Activation of Saturated Fluorocarbons to Synthesize Spirobiindanes, Monofluoroalkenes, and Indane Derivatives. iScience 2019; 17:132-143. [PMID: 31276957 PMCID: PMC6612000 DOI: 10.1016/j.isci.2019.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Fluorinated organic compounds are produced in abundance by the pharmaceutical and agrochemical industry, making such compounds attractive as building blocks for further functionalization. Unfortunately, activation of C(sp3)-F bond in saturated fluorocarbons, especially for aliphatic gem-difluoroalkanes, remains challenging. Here we describe the selective activation of inert C(sp3)-F bonds catalyzed by B(C6F5)3. In hexafluoro-2-propanol (HFIP), chemically robust aliphatic gem-difluorides are converted in high yields to the corresponding substituted 2,2′,3,3′-tetrahydro-1,1′-spirobiindenes via a B(C6F5)3-catalyzed intramolecular cascade Friedel-Crafts cyclization, not requiring a silicon-based trapping reagent. However, in the absence of a hydrogen-bonding donor solvent such as HFIP, the aliphatic gem-difluorides preferentially engage in a defluorination/elimination process that provides monofluorinated alkenes in good yields. Furthermore, a series of substituted 1-alkyl-2,3-dihydro-1H-indenes was obtained in high yield from the B(C6F5)3-catalyzed defluorinative cyclization of aliphatic secondary monofluorides in HFIP. The protocol could inspire development of a new class of main-group Lewis acid-catalyzed C(sp3)-F bond activation in general unactivated fluorocarbons. C(sp3)-F bond activation in general unactivated fluorocarbons The activation of C(sp3)-F bonds in aliphatic gem-difluoroalkanes The selective activation of inert C(sp3)-F bonds catalyzed by B(C6F5)3 An intramolecular cascade defluorinative Friedel-Crafts cyclization
Collapse
Affiliation(s)
- Jiandong Wang
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Yuta Ogawa
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan; Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.
| |
Collapse
|
27
|
Li WP, Zhu YC, Zhou YJ, Yang HW, Zhu CJ. Visible light induced C-H monofluoroalkylation to synthesize 1,4-unsaturated compound. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Yang Y, Yuan F, Ren X, Wang G, Zhao W, Tang X, Guo M. Copper-Catalyzed Oxydifluoroalkylation of Hydroxyl-Containing Alkenes. J Org Chem 2019; 84:4507-4516. [DOI: 10.1021/acs.joc.9b00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Fangyuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangwei Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
29
|
Liu Z, Zhu G, Gao W, Yang L, Ji H, Tong L, Tang B. Copper-catalyzed regioselective cyclization of vinyl azides by gem-difluoromethylene for trisubstituted pyridines. Org Chem Front 2019. [DOI: 10.1039/c8qo01212a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel copper-catalyzed cyclization of readily available vinyl azides with gem-difluoromethylene is described.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Guangyu Zhu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lin Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Huimin Ji
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lili Tong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
30
|
Zhou S, Yuan F, Guo M, Wang G, Tang X, Zhao W. Switchable Synthetic Strategy toward Trisubstituted and Tetrasubstituted Exocyclic Alkenes. Org Lett 2018; 20:6710-6714. [DOI: 10.1021/acs.orglett.8b02801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Fangyuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
31
|
Wang X, Liu J, Yu Z, Guo M, Tang X, Wang G. Desulfonylation-Initiated Distal Alkenyl Migration in Copper-Catalyzed Alkenylation of Unactivated Alkenes. Org Lett 2018; 20:6516-6519. [DOI: 10.1021/acs.orglett.8b02840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoyang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Jing Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
32
|
Yu W, Ouyang Y, Xu XH, Qing FL. Visible Light-Induced Methoxycarbonyldifluoromethylation of Trimethylsilyl Enol Ethers and Allyltrimethylsilanes with FSO2
CF2
CO2
Me. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Yu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Yao Ouyang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu, Shanghai 201620 China
| |
Collapse
|
33
|
Da Y, Han S, Du X, Liu S, Liu L, Li J. Copper(I)-Catalyzed Oxydifluoroalkylation of Alkenes: A Route to Functionalization of Lactones. Org Lett 2018; 20:5149-5152. [DOI: 10.1021/acs.orglett.8b02069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yang Da
- School of Pharmaceutical Science, Jiangnan University, Lihu Road 1800, 214122 Wuxi, P. R. China
| | - Shengnan Han
- School of Pharmaceutical Science, Jiangnan University, Lihu Road 1800, 214122 Wuxi, P. R. China
| | - Xiaoyong Du
- School of Pharmaceutical Science, Jiangnan University, Lihu Road 1800, 214122 Wuxi, P. R. China
| | - Shaodong Liu
- School of Pharmaceutical Science, Jiangnan University, Lihu Road 1800, 214122 Wuxi, P. R. China
| | - Lei Liu
- School of Pharmaceutical Science, Jiangnan University, Lihu Road 1800, 214122 Wuxi, P. R. China
| | - Jie Li
- School of Pharmaceutical Science, Jiangnan University, Lihu Road 1800, 214122 Wuxi, P. R. China
| |
Collapse
|
34
|
Zygalski L, Middel C, Harms K, Koert U. Enolizable β-Fluoroenones: Synthesis and Asymmetric 1,2-Reduction. Org Lett 2018; 20:5071-5074. [PMID: 30085673 DOI: 10.1021/acs.orglett.8b02435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrofluorination of enolizable ynones with AgF in t-BuOH/DMF is reported. The formation of furans as side products can be suppressed using 2,2'-biphenol. The corresponding β-fluoroenones were obtained with good Z-selectivity. A variety of functional groups are tolerated. β-Fluoroenones are vinylogous acid fluorides whose hydrolysis to vinylogous acids can be avoided under the reported reaction conditions. The asymmetric 1,2-reduction of β-fluoroenones to 3-fluoroallylic alcohols is possible with pinacolborane and a Ni(0) catalyst prepared from a pyrimidyloxazoline ligand.
Collapse
Affiliation(s)
- Lukas Zygalski
- Fachbereich Chemie , Philipps-University Marburg , Hans-Meerwein-Strasse 4 , D-35043 Marburg , Germany
| | - Christoph Middel
- Fachbereich Chemie , Philipps-University Marburg , Hans-Meerwein-Strasse 4 , D-35043 Marburg , Germany
| | - Klaus Harms
- Fachbereich Chemie , Philipps-University Marburg , Hans-Meerwein-Strasse 4 , D-35043 Marburg , Germany
| | - Ulrich Koert
- Fachbereich Chemie , Philipps-University Marburg , Hans-Meerwein-Strasse 4 , D-35043 Marburg , Germany
| |
Collapse
|
35
|
Chu XQ, Xie T, Li L, Ge D, Shen ZL, Loh TP. Combining Fluoroalkylation and Defluorination to Enable Formal [3 + 2 + 1] Heteroannulation by Using Visible-Light Photoredox Organocatalysis. Org Lett 2018; 20:2749-2752. [DOI: 10.1021/acs.orglett.8b00963] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ting Xie
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lin Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
36
|
Wang X, Li M, Yang Y, Guo M, Tang X, Wang G. One-pot Construction of Difluorinated Pyrrolizidine and Indolizidine Scaffolds via Copper-Catalyzed Radical Cascade Annulation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701643] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoyang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Miao Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| |
Collapse
|
37
|
Feng X, Wang X, Chen H, Tang X, Guo M, Zhao W, Wang G. Copper-mediated regioselective hydrodifluoroalkylation of alkynes. Org Biomol Chem 2018; 16:2841-2845. [DOI: 10.1039/c8ob00256h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly regioselective copper-mediated hydrodifluoroalkylation of alkynes with ethyl bromodifluoroacetate or bromodifluoroacetamides has been developed.
Collapse
Affiliation(s)
- Xiaorui Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Xiaoyang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Hongtai Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Minjie Guo
- Institute for Molecular Design and Synthesis
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| |
Collapse
|
38
|
Yuan F, Zhou S, Yang Y, Guo M, Tang X, Wang G. Copper catalyzed one-pot difluoroalkylation and lactonization of unsaturated carboxylic acids. Org Chem Front 2018. [DOI: 10.1039/c8qo00940f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new cost-effective method for one-pot bifunctionalization of unsaturated carboxylic acids to afford difluoroalkylated γ-lactones has been reported using a Cu(i) catalyst.
Collapse
Affiliation(s)
- Fangyuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Minjie Guo
- Institute for Molecular Design and Synthesis
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
| |
Collapse
|
39
|
Zhang J, Jin W, Cheng C, Luo F. Copper-catalyzed remote oxidation of alcohols initiated by radical difluoroalkylation of alkenes: facile access to difluoroalkylated carbonyl compounds. Org Biomol Chem 2018; 16:3876-3880. [DOI: 10.1039/c8ob00889b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A Cu-catalyzed oxidation of alcohols triggered by the radical difluoroalkylation of alkenes has been developed.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Weiwei Jin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Cungui Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Fang Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|