1
|
Negi L, Soni A, Sharma D, Manisha M, Joshi RK. Ru(II)-Catalyzed ortho-Vinylation of Benzoic Acids in Water. J Org Chem 2025; 90:2567-2576. [PMID: 39761099 DOI: 10.1021/acs.joc.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Herein, we report an efficient [Ru(η6-C6H6)Cl2]2 catalyzed oxidative C-H alkenylation of benzoic acid in the green solvent water. A regioselective olefination of benzoic acid with functionalized alkenes like styrene and acrylate was established at a very mild condition of 60 °C temperature and in an aqueous medium. In contrast to the cyclization of the carboxylic group, a selective ortho-olefination product of benzoic acid was observed with the acrylate. Moreover, a selective formation of mono-olefinated products were observed with activated olefins (acrylate), while mono and diolefinated products were recorded with unactivated olefins (styrene). In contrast to the reactivity of acrylates and styrenes, a fruitful development and formation of a novel five-member cyclic ring, i.e., the (Z)-3-ferrocenylideneisobenzofuran-1(3H)-one, was observed when vinylferrocene was considered as a coupling partner for the reaction.
Collapse
Affiliation(s)
- Lalit Negi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Aditi Soni
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Deepak Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Manisha Manisha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Raj K Joshi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| |
Collapse
|
2
|
Chen W, Xu T, Zhu G, Guo B, Tang L, Wang J. Concise Total Syntheses of Amorfrutin A and B. ChemistrySelect 2022. [DOI: 10.1002/slct.202202968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenzhang Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Tingxiao Xu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- College of Pharmacy Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Jianta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| |
Collapse
|
3
|
Sebald MA, Gebauer J, Koch M. Concise Syntheses of Alternariol, Alternariol-9-monomethyl Ether and Their D3-Isotopologues. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1698-8328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAlternariol (AOH) and alternariol-9-monomethyl ether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuffs like tomatoes, nuts, and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH and AME levels is of increasing interest. As the availability of both native and labeled AOH and AME analytical standards is very limited, we herein present a novel and concise approach towards their synthesis by employing a ruthenium-catalyzed ortho-arylation as the key step. Finally, we demonstrate their suitability as internal standards in stable-isotope dilution assay (SIDA)-HPLC-MS/MS analysis, a technique commonly used for the quantification of natural products in food and feed.
Collapse
Affiliation(s)
| | | | - Matthias Koch
- Bundesanstalt für Materialforschung und -prüfung, Abteilung Analytische Chemie, Referenzmaterialien
| |
Collapse
|
4
|
Ruthenium-catalyzed regioselective N-directed C–H olefination of 2-phenylphthalazinone. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Fu Z, Cao X, Yin J, Gou Z, Yi X, Cai H. ortho-C—H Bond Functionalization of Carboxylic Acid Using Carboxyl as a Traceless Directing Group Based on the Strategy of “Two Birds with One Stone”. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Jadhav PP, Kahar NM, Dawande SG. Ruthenium(II)-Catalyzed Highly Chemo- and Regioselective Oxidative C6 Alkenylation of Indole-7-carboxamides. Org Lett 2021; 23:8673-8677. [PMID: 34723545 DOI: 10.1021/acs.orglett.1c02948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We disclosed the first efficient method for highly chemo- and regioselective C6 alkenylation of indole-7-carboxamides using inexpensive Ru(II) catalyst through chelation assisted C-H bond activation. Electronically diverse indole-7-carboxamides and alkenes react efficiently to produce a wide range of C6 alkenyl indole derivatives. Further the C6 alkenyl indole-7-carboxamides modified to their derivatives through simple chemical transformations. The observed regioselectivity and kinetics has been evidenced by deuterium incorporation and intermolecular competitive studies. In addition, for mechanistic insights, the intermediates were analyzed by HRMS.
Collapse
Affiliation(s)
- Pankaj P Jadhav
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Nilesh M Kahar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Sudam G Dawande
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| |
Collapse
|
7
|
Hu Z, Belitz F, Zhang G, Papp F, Gooßen LJ. Ru-Catalyzed ( E)-Specific ortho-C-H Alkenylation of Arenecarboxylic Acids by Coupling with Alkenyl Bromides. Org Lett 2021; 23:3541-3545. [PMID: 33885311 DOI: 10.1021/acs.orglett.1c00956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of [p-cymene)RuCl2]2, (E)-configured alkenyl bromides couple with aromatic carboxylates to form ortho-vinylbenzoic acids. This C-H vinylation proceeds in high yields without any activating phosphine ligands and has an excellent functional group tolerance. Starting from commonly available (E/Z )-mixtures of alkenyl bromides, (E)-configured vinyl arenes or dienes are formed exclusively. Mechanistic studies show that this selectivity is achieved because the (E)-configured alkenyl bromides undergo a smooth coupling, whereas the (Z)-isomers are rapidly eliminated with the formation of alkynes.
Collapse
Affiliation(s)
- Zhiyong Hu
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Belitz
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Guodong Zhang
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Papp
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Lukas J Gooßen
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
8
|
|
9
|
Ali W, Prakash G, Maiti D. Recent development in transition metal-catalysed C-H olefination. Chem Sci 2021; 12:2735-2759. [PMID: 34164039 PMCID: PMC8179420 DOI: 10.1039/d0sc05555g] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C-H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C-H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C-H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C-H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Gaurav Prakash
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
10
|
Mandal A, Bera R, Baidya M. Regioselective C-H Alkenylation and Unsymmetrical Bis-olefination of Heteroarene Carboxylic Acids with Ruthenium Catalysis in Water. J Org Chem 2021; 86:62-73. [PMID: 33251801 DOI: 10.1021/acs.joc.0c02215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient weak carboxylate-assisted oxidative cross-dehydrogenative C-H/C-H coupling (CDC) of heteroarenes with readily available olefins has been devised employing water as green solvent under ruthenium(II) catalysis. The reaction is operationally simple, accommodates a large variety of heteroaromatic carboxylic acids as well as olefins, and facilitates a diverse array of high-value olefin-tethered heteroarenes in high yields (up to 87%). The potential of this ortho-C-H bond activation strategy has also been exploited toward tunable synthesis of densely functionalized heteroarenes through challenging unsymmetrical bis-olefination process in a one-pot sequential fashion. Mechanistic investigation demonstrates a reversible ruthenation process and C-H metalation step might not be involved in the rate-determining step.
Collapse
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
11
|
Dana S, Dey P, Patil SA, Baidya M. Enhancing Ru(II)-Catalysis with Visible-Light-Mediated Dye-Sensitized TiO 2 Photocatalysis for Oxidative C-H Olefination of Arene Carboxylic Acids at Room Temperature. Chem Asian J 2020; 15:564-567. [PMID: 32003942 DOI: 10.1002/asia.201901718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Indexed: 11/12/2022]
Abstract
Erythrosine B sensitized TiO2 photocatalysis has been combined with Ru(II)-catalysis to accomplish an oxidative olefination/annulation of benzoic acids with activated olefins under mild conditions that tolerates useful functionalities, such as halides, free hydroxy, acetamido, etc. The morphology of the photocatalyst is unaffected during the reaction and it can be reused. Mechanistic studies favor the involvement of a photo-induced single electron transfer process.
Collapse
Affiliation(s)
- Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Purusattam Dey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Ramanagara District, 562112, Bangalore Rural Karnataka, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| |
Collapse
|
12
|
Prévost S. Regioselective C−H Functionalization of Naphthalenes: Reactivity and Mechanistic Insights. Chempluschem 2020; 85:476-486. [DOI: 10.1002/cplu.202000005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/29/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Sébastien Prévost
- Laboratoire de Synthèse Organique Ecole Polytechnique ENSTA CNRSInstitut Polytechnique de Paris 828 boulevard des Maréchaux 91120 Palaiseau France
| |
Collapse
|
13
|
Xing L, Zhang Y, Zhang Y, Ai Z, Li X, Du Y, Deng J, Zhao K. Regioselective Chlorolactonization of Styrene-Type Carboxylic Esters and Amides via PhICl 2-Mediated Oxidative C-O/C-Cl Bond Formations. J Org Chem 2019; 84:13832-13840. [PMID: 31525875 DOI: 10.1021/acs.joc.9b02022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile method employing styrene-type carboxylic esters or amides in the presence of PhICl2 in CH3CN was developed to achieve the synthesis of 6-endo products 3,4-dihydroisocoumarins or 3,4-dihydroisocoumarin-1-imines in good to high yields. This metal-free regioselective intramolecular chlorolactonization process was proposed to involve a PhICl2-mediated oxidative C-O bond formation followed by C-Cl bond formation.
Collapse
Affiliation(s)
- Linlin Xing
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Yong Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Yilin Zhang
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506-6045 , United States
| | - Zhenkang Ai
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences , Chongqing University , Chongqing 401331 , China
| | - Kang Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
14
|
Li F, Li X, Gong T, Fu Y. Selective Conversion of Furoic Acid Derivatives to Multi‐Substituted Furanacrylate by a Ruthenium Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201901365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Feng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Xinglong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Tianjun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of ChemistryUniversity of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
15
|
Mandal A, Mehta G, Dana S, Baidya M. Streamlined Ruthenium(II) Catalysis for One-Pot 2-fold Unsymmetrical C–H Olefination of (Hetero)Arenes. Org Lett 2019; 21:5879-5883. [DOI: 10.1021/acs.orglett.9b02008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Gunjan Mehta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
16
|
Tokala R, Bora D, Sana S, Nachtigall FM, Santos LS, Shankaraiah N. Ru(II)-Catalyzed Regioselective Hydroxymethylation of β-Carbolines and Isoquinolines via C-H Functionalization: Probing the Mechanism by Online ESI-MS/MS Screening. J Org Chem 2019; 84:5504-5513. [PMID: 30945857 DOI: 10.1021/acs.joc.9b00454] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Ru(II)-catalyzed regioselective C-H activation toward hydroxymethylation of β-carbolines and isoquinolines as effective directing groups has been developed, and the mechanism was probed by using online electrospray ionization-tandem mass spectrometry. The introduction of the hydroxymethyl group in the biologically relevant molecules routed via C-H functionalization remains an important task. Gratifyingly, this protocol draws attention to the regioselective formation of monohydroxymethylated β-carboline/isoquinoline products exclusively.
Collapse
Affiliation(s)
- Ramya Tokala
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500037 , India
| | - Darshana Bora
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500037 , India
| | - Sravani Sana
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500037 , India
| | - Fabiane M Nachtigall
- Instituto de Ciencias Químicas Aplicadas , Universidad Autónoma de Chile , Sede Talca 3467987 , Chile
| | - Leonardo S Santos
- Instituto de Química de Recursos Naturales , Universidad de Talca , Talca 3462227 , Chile
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500037 , India
| |
Collapse
|
17
|
Abstract
The past decades have witnessed rapid development in organic synthesis via catalysis, particularly the reactions through C–H bond functionalization. Transition metals such as Pd, Rh and Ru constitute a crucial catalyst in these C–H bond functionalization reactions. This process is highly attractive not only because it saves reaction time and reduces waste,but also, more importantly, it allows the reaction to be performed in a highly region specific manner. Indeed, several organic compounds could be readily accessed via C–H bond functionalization with transition metals. In the recent past, tremendous progress has been made on C–H bond functionalization via ruthenium catalysis, including less expensive but more stable ruthenium(II) catalysts. The ruthenium-catalysed C–H bond functionalization, viz. arylation, alkenylation, annulation, oxygenation, and halogenation involving C–C, C–O, C–N, and C–X bond forming reactions, has been described and presented in numerous reviews. This review discusses the recent development of C–H bond functionalization with various ruthenium-based catalysts. The first section of the review presents arylation reactions covering arylation directed by N–Heteroaryl groups, oxidative arylation, dehydrative arylation and arylation involving decarboxylative and sp3-C–H bond functionalization. Subsequently, the ruthenium-catalysed alkenylation, alkylation, allylation including oxidative alkenylation and meta-selective C–H bond alkylation has been presented. Finally, the oxidative annulation of various arenes with alkynes involving C–H/O–H or C–H/N–H bond cleavage reactions has been discussed.
Collapse
|
18
|
Luo F. Progress in Transition Metal Catalyzed C-H Functionalization Directed by Carboxyl Group. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Dana S, Chowdhury D, Mandal A, Chipem FAS, Baidya M. Ruthenium(II) Catalysis/Noncovalent Interaction Synergy for Cross-Dehydrogenative Coupling of Arene Carboxylic Acids. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03392] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
20
|
Grandhi GS, Selvakumar J, Dana S, Baidya M. Directed C–H Bond Functionalization: A Unified Approach to Formal Syntheses of Amorfrutin A, Cajaninstilbene Acid, Hydrangenol, and Macrophyllol. J Org Chem 2018; 83:12327-12333. [DOI: 10.1021/acs.joc.8b02116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Jayaraman Selvakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
21
|
Wang X, Sun H, Liu J, Dai D, Zhang M, Zhou H, Zhong W, Lu X. Ruthenium-Promoted C–H Activation Reactions between DNA-Conjugated Acrylamide and Aromatic Acids. Org Lett 2018; 20:4764-4768. [DOI: 10.1021/acs.orglett.8b01837] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Hui Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Mingqiang Zhang
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Wenge Zhong
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
22
|
Kumar GS, Chand T, Singh D, Kapur M. Ruthenium-Catalyzed C–H Functionalization of Benzoic Acids with Allyl Alcohols: A Controlled Reactivity Switch between C–H Alkenylation and C–H Alkylation Pathways. Org Lett 2018; 20:4934-4937. [DOI: 10.1021/acs.orglett.8b02064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| | - Tapasi Chand
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| | - Diksha Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| |
Collapse
|
23
|
Mandal A, Dana S, Chowdhury D, Baidya M. RuII
-Catalyzed Annulative Coupling of Benzoic Acids with Vinyl Sulfone via Weak Carboxylate-Assisted C−H Bond Activation. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anup Mandal
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| | - Suman Dana
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| | - Deepan Chowdhury
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| |
Collapse
|
24
|
Gholamhosseyni M, Kianmehr E. A ruthenium-catalyzed alkenylation–annulation approach for the synthesis of indazole derivatives via C–H bond activation. Org Biomol Chem 2018; 16:5973-5978. [DOI: 10.1039/c8ob00999f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new approach to indazole derivatives through a Ru(ii)-catalyzed C–H activation–annulation reaction, which proceeds via C–C and C–N bond forming reactions, is reported.
Collapse
Affiliation(s)
| | - Ebrahim Kianmehr
- School of Chemistry
- College of science
- University of Tehran
- Tehran 1417614411
- Iran
| |
Collapse
|