1
|
Meguro Y, Oyake M, Enomoto M, Kuwahara S. Collective Total Synthesis of Four Ganoderma Meroterpenoids Based on an Intramolecular Aldol Strategy. Org Lett 2025; 27:2049-2052. [PMID: 39994830 PMCID: PMC11894643 DOI: 10.1021/acs.orglett.4c04756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The total synthesis of four Ganoderma meroterpenoids (lingzhiol, sinensilactam A, lingzhilactone B, and applanatumol I) has been accomplished from a known olefinic lactone in much shorter steps (4-8 steps) and markedly improved overall yields (15-27%) compared to previous syntheses. The key steps are highly regio- and diastereoselective intramolecular aldol reactions to prepare bicyclic lactone intermediates and a decarboxylative radical cyclization to install the unique tetracyclic ring system of lingzhiol.
Collapse
Affiliation(s)
- Yasuhiro Meguro
- Graduate School of Agricultural
Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Mari Oyake
- Graduate School of Agricultural
Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masaru Enomoto
- Graduate School of Agricultural
Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shigefumi Kuwahara
- Graduate School of Agricultural
Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
2
|
Rode A, Müller N, Kováč O, Wurst K, Magauer T. A General Entry to Ganoderma Meroterpenoids: Synthesis of Applanatumol E, H, and I, Lingzhilactone B, Meroapplanin B, and Lingzhiol. Org Lett 2024; 26:9017-9021. [PMID: 39392896 PMCID: PMC7616716 DOI: 10.1021/acs.orglett.4c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Ganoderma meroterpenoids are fungal derived hybrid natural product class containing a 1,2,4-trisubstituted benzene ring and a polycyclic terpenoid part. The representatives applanatumol E, H and I, lingzhilactone B, and meroapplanin B share the same bicyclic lactone moiety connected to the arene. Employing photo-Fries rearrangements as the key step enabled a general entry to these natural products. For the synthesis of the tetracyclic framework of lingzhiol, we made use of a powerful photoredox oxidative decarboxylation/Friedel-Crafts sequence.
Collapse
Affiliation(s)
- Alexander Rode
- Department of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Nicolas Müller
- Department of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ondřej Kováč
- Department of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
- Department of Organic Chemistry, Palacký University Olomouc, 77900 Olomouc, Czech Republic
| | - Klaus Wurst
- Department of General Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Magauer
- Department of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
5
|
Serviano JMI, Phipps EJT, Holland PL. Intermolecular Hydroalkoxylation and Hydrocarboxylation of 2-Azadienes with High Efficiency. J Org Chem 2023; 88:3277-3281. [PMID: 36802598 PMCID: PMC10084948 DOI: 10.1021/acs.joc.2c02534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Described here is a method for intermolecular hydroalkoxylation and hydrocarboxylation of 2-azadienes through cobalt-catalyzed hydrogen atom transfer and oxidation. This protocol provides a source of 2-azaallyl cation equivalents under mild conditions, is chemoselective in the presence of other C═C double bonds, and requires no excess amount of added alcohol or oxidant. Mechanistic studies suggest that the selectivity arises from lowering the transition state that leads to the highly stabilized 2-azaallyl radical.
Collapse
Affiliation(s)
- Juan M I Serviano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Erik J T Phipps
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Le Du E, Waser J. Recent progress in alkynylation with hypervalent iodine reagents. Chem Commun (Camb) 2023; 59:1589-1604. [PMID: 36656618 PMCID: PMC9904279 DOI: 10.1039/d2cc06168f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Although alkynes are one of the smallest functional groups, they are among the most versatile building blocks for organic chemistry, with applications ranging from biochemistry to material sciences. Alkynylation reactions have traditionally relied on the use of acetylenes as nucleophiles. The discovery and development of ethynyl hypervalent iodine reagents have allowed to greatly expand the transfer of alkynes as electrophilic synthons. In this feature article the progress in the field since 2018 will be presented. After a short introduction on alkynylation reactions and hypervalent iodine reagents, the developments in the synthesis of alkynyl hypervalent iodine reagents will be discussed. Their recent use in base-mediated and transition-metal catalyzed alkynylations will be described. Progress in radical-based alkynylations and atom-economical transformations will then be presented.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Ma S, Li Z, Yu P, Shi H, Yang H, Yi J, Zhang Z, Duan X, Xie X, She X. Construction of the Skeleton of Lucidumone. Org Lett 2022; 24:5541-5545. [PMID: 35894551 DOI: 10.1021/acs.orglett.2c02023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The skeleton of lucidumone was constructed through oxidative dearomatization/intramolecular Diels-Alder reaction, Cu-mediated remote C-H hydroxylation, allyl oxidation, acid-promoted dynamic kinetic resolution cyclization, and benzylic oxidation.
Collapse
Affiliation(s)
- Shiqiang Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhen Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pengfei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongliang Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hesi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiuzhou Yi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoguang Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Šimek M, Bártová K, Issad S, Hájek M, Císařová I, Jahn U. Unified Total Synthesis of Diverse Meroterpenoids from Ganoderma Applanatum. Org Lett 2022; 24:4552-4556. [PMID: 35723435 DOI: 10.1021/acs.orglett.2c01633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unified approach to meroterpenoids applanatumols B, V, W, X, and Y produced by the medicinal fungus Ganoderma applanatum and 2'-epi-spiroapplanatumine O is presented. The key synthetic sequence consists of a tandem anionic ketone allylation/oxy-Cope rearrangement/α-oxygenation furnishing an α-aminoxy ketone and a persistent radical effect-based 5-exo-trig cyclization leading to the trisubstituted cyclopentane core. The relative configuration of applanatumol V has to be revised. Some compounds display significant cytotoxic and antioxidant properties.
Collapse
Affiliation(s)
- Michal Šimek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Samy Issad
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
9
|
Liu XL, Li L, Lin HZ, Deng JT, Zhang XZ, Peng JB. Copper-catalyzed 1,2-Borylacylation of 1,3-Enynes: synthesis of β-Alkynyl ketones. Chem Commun (Camb) 2022; 58:5968-5971. [PMID: 35475443 DOI: 10.1039/d2cc01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed 1,2-borylacylation of 1,3-enynes with B2pin2 and acid chlorides has been developed. Using readily available 1,3-enynes, B2pin2 and acid chlorides as substrates, a range of highly functionalized α,α-disubstituted β-alkynyl ketones were readily prepared under mild conditions in moderate to good yields. The borylacylated products can be easily derivatized to give several valuable structures. Notably, treatment of the products with NaBO3·4H2O provided 1,2-allenyl ketones, which is proposed to proceed via a retro-aldol process of the corresponding homopropargyl alcohols.
Collapse
Affiliation(s)
- Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Han-Ze Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Jing-Tong Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| |
Collapse
|
10
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio- and Diastereoselective Copper-Catalyzed Carbomagnesiation for the Synthesis of Penta- and Hexa-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:11804-11808. [PMID: 33742749 DOI: 10.1002/anie.202102509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 11/07/2022]
Abstract
Despite the highly strained nature of cyclopropanes possessing three vicinal quaternary carbon stereocenters, the regio- and diastereoselective copper-catalyzed carbomagnesiation reaction of cyclopropenes provides an easy and efficient access to these novel persubstituted cyclopropyl cores with a complete regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - André U Augustin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Laura Levy
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
11
|
Cohen Y, Augustin AU, Levy L, Jones PG, Werz DB, Marek I. Regio‐ and Diastereoselective Copper‐Catalyzed Carbomagnesiation for the Synthesis of Penta‐ and Hexa‐Substituted Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yair Cohen
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - André U. Augustin
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Laura Levy
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
12
|
Ma W, Jiang F, Chen W, Xu X, Sun M, Huang X. Improved Synthesis of a Smad3 Phosphorylation Inhibitor Lingzhifuran A via Condensation Reaction. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Wang Z, Liu J. All-carbon [3 + 2] cycloaddition in natural product synthesis. Beilstein J Org Chem 2020; 16:3015-3031. [PMID: 33363670 PMCID: PMC7736699 DOI: 10.3762/bjoc.16.251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Many natural products possess interesting medicinal properties that arise from their intriguing chemical structures. The highly-substituted carbocycle is one of the most common structural features in many structurally complicated natural products. However, the construction of highly-substituted, stereo-congested, five-membered carbocycles containing all-carbon quaternary center(s) is, at present, a distinct challenge in modern synthetic chemistry, which can be accessed through the all-carbon [3 + 2] cycloaddition. More importantly, the all-carbon [3 + 2] cycloaddition can forge vicinal all-carbon quaternary centers in a single step and has been demonstrated in the synthesis of complex natural products. In this review, we present the development of all-carbon [3 + 2] cycloadditions and illustrate their application in natural product synthesis reported in the last decade covering 2011-2020 (inclusive).
Collapse
Affiliation(s)
- Zhuo Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Junyang Liu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
14
|
|
15
|
Chang TY, Dotson JJ, Garcia-Garibay MA. Scalable Synthesis of Vicinal Quaternary Stereocenters via the Solid-State Photodecarbonylation of a Crystalline Hexasubstituted Ketone. Org Lett 2020; 22:8855-8859. [PMID: 33119318 DOI: 10.1021/acs.orglett.0c03226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the synthesis and stereospecific solid-state photodecarbonylation of a hexasubstituted ketone featuring six distinct α-substituents. The photoproduct of the solid-state transformation features vicinal all-carbon quaternary stereocenters. While reactions carried out in bulk powders and aqueous crystalline suspensions were complicated by secondary photochemistry of the primary photoproduct, optimal conditions provided good yields and recyclable starting material. Subsequent transformations of the α-substituents having orthogonal chemical reactivity illustrate the potential of this transformation toward constructing complex architectures.
Collapse
Affiliation(s)
- Trevor Y Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Jordan J Dotson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
16
|
Wang K, Tan X, Xie Z. A concise total synthesis of unprecedented tetranorsesquiterpenoids applanatumol Z5. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem 2020; 209:112860. [PMID: 33032085 DOI: 10.1016/j.ejmech.2020.112860] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Meroterpenoids are partially derived from the terpenoids, distributing widely in the plants, animals and fungi. The complex structures and diverse bioactivities of meroterpenoids have attracted more attention for chemists and pharmacologists. Since the first review summarized by Geris in 2009, there are absent of systematic reviews reported about meroterpenoids from the higher and lower fungi up to now. In the past decades, myriads of meroterpenoids were discovered, and it is necessary to summarize these meroterpenoids about their unique structures and promising bioactivities. In this review, we use a new classification method based on the non-terpene precursors, and also highlight the structural features, bioactivity of natural meroterpenoids from the higher and lower fungi covering the period of September 2008 to February 2020. A total of 709 compounds were discussed and cited the 182 references. Meanwhile, we also primarily summarize their occurrence, structural diversity, biological activities, and molecular targets.
Collapse
|
18
|
Qu Y, Wang Z, Zhang Z, Zhang W, Huang J, Yang Z. Asymmetric Total Synthesis of (+)-Waihoensene. J Am Chem Soc 2020; 142:6511-6515. [DOI: 10.1021/jacs.0c02143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yongzheng Qu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheyuan Wang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhongchao Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wendou Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jun Huang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
19
|
Cao T, Zhu L, Lan Y, Huang J, Yang Z. Protecting-Group-Free Total Syntheses of (±)-Norascyronones A and B. Org Lett 2020; 22:2517-2521. [DOI: 10.1021/acs.orglett.0c00212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School and Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School and Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School and Shenzhen Bay Laboratory, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Zhang DW, Fan HL, Zhang W, Li CJ, Luo S, Qin HB. Collective enantioselective total synthesis of (+)-sinensilactam A, (+)-lingzhilactone B and (−)-lingzhiol: divergent reactivity of styrene. Chem Commun (Camb) 2020; 56:10066-10069. [PMID: 32735006 DOI: 10.1039/d0cc04064a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The collective total synthesis of (+)-sinensilactam A, (+)-lingzhilactone B, (+)-lingzhilactone C and (−)-lingzhiol has been accomplished from a common epoxide intermediate 9.
Collapse
Affiliation(s)
- Da-Wei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Hui-Lan Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Wenzhao Zhang
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Cheng-Ji Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Sanzhong Luo
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- China
- Center of Basic Molecular Science
| | - Hong-Bo Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| |
Collapse
|
21
|
Sokolenko YM, Yurov YY, Vashchenko BV, Hryshchuk OV, Filimonova Y, Ostapchuk EN, Artemenko A, Zaremba OV, Grygorenko OO. Far Away from Flatland. Synthesis and Molecular Structure of Dihetera[3.3. n]propellanes and Trihetera[3.3. n]propellanes: Advanced Analogues of Morpholine/Piperazine. J Org Chem 2019; 84:13908-13921. [PMID: 31509707 DOI: 10.1021/acs.joc.9b02067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An approach to di- and trihetera[3.3.n]propellanes (n = 2-4 ), advanced morpholine and piperazine analogues, is developed. The key step of the reaction sequence included a [3 + 2] cycloaddition reaction of unsaturated vicinal dicarboxylic acid derivatives and in situ generated azomethine ylide resulting in the formation of the pyrrolidine ring. One more heteroaliphatic ring (i.e., pyrrolidine or tetrahydrofuran) was annelated by nucleophilic cyclization of the appropriate 1,4-dielectrophilic intermediates. There were 11 examples of the title products obtained in 3-5 steps on a multigram scale with 10-72% overall yields. Additionally, molecular structures of homologous dihetera[3.3.n]propellanes, analogues of morpholine, were obtained from X-ray diffraction studies and analyzed using exit vector plots (EVPs). It was shown that the scaffolds obtained are somewhat larger as compared to the parent morpholine and bicyclic 3-oxa-7-azabicyclo[3.3.0]octane. Moreover, despite very similar chemical structures, they provide a very distinct spatial position of heteroatoms, which is clearly seen from the conformation adopted by a formal eight-membered ring including both N and O atoms (i.e., crown, boat-chair, twist chair-chair, and boat-boat for the oxaza[3.3.2]-, -[3.3.3]-, -[4.3.3]propellanes, and 3-oxa-7-azabicyclo[3.3.0]octane, respectively).
Collapse
Affiliation(s)
- Yevhenii M Sokolenko
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| | - Yevhen Yu Yurov
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| | - Oleksandr V Hryshchuk
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| | | | - Eugeniy N Ostapchuk
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| | - Artem Artemenko
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine
| | - Oleg V Zaremba
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. , Chervonotkatska Street 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Volodymyrska Street 60 , Kyiv 01601 , Ukraine
| |
Collapse
|
22
|
Yan YM, Zhang HX, Liu H, Wang Y, Wu JB, Li YP, Cheng YX. (+/−)-Lucidumone, a COX-2 Inhibitory Caged Fungal Meroterpenoid from Ganoderma lucidum. Org Lett 2019; 21:8523-8527. [DOI: 10.1021/acs.orglett.9b02840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong-Ming Yan
- School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Hao-Xing Zhang
- School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Huan Liu
- School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jing-Bo Wu
- School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yan-Peng Li
- School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Health Science Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| |
Collapse
|
23
|
Long R, Yang Z. Concise synthesis of the core structure of madreporanone by Rh-catalyzed [3+2] cycloaddition. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
|
25
|
Liu S, Zhang T, Zhu L, Zhong K, Gong J, Yang Z, Bai R, Lan Y. Retro-metal-ene versus retro-Aldol: mechanistic insight into Rh-catalysed formal [3+2] cycloaddition. Chem Commun (Camb) 2018; 54:13551-13554. [PMID: 30444245 DOI: 10.1039/c8cc08335e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Theoretical calculations have been performed to investigate the mechanism and stereoselectivity of rhodium-catalysed intramolecular [3+2] cycloaddition for construction of a substituted hexahydropentalene complex. A new C-C bond cleavage mechanism, retro-Aldol-type, is proposed and verified for this Rh-catalysed [3+2] cycloaddition reaction.
Collapse
Affiliation(s)
- Song Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Jianxian Gong
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. and State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and the Peking University, Beijing 100871, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. and State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and the Peking University, Beijing 100871, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China. and College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|