1
|
Tostado J, Milián A, Vaquero JJ, Fernández-Rodríguez MA. Synthesis of Seven- and Eight-Membered Rings by a Brønsted Acid Catalyzed Cationic Carbocyclization of Biphenyl Embedded Enynes. Org Lett 2024; 26:3343-3348. [PMID: 38603574 PMCID: PMC11059095 DOI: 10.1021/acs.orglett.4c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
A Brønsted acid catalyzed cyclization of o-alkenyl-o'-alkynylbiaryls for the synthesis of biologically relevant dibenzo-fused medium-sized rings has been developed. The outcome of the cyclization is determined by the nature of the substituent at the alkyne, with arenes favoring seven-membered rings and alkyl substituents producing eight-membered rings. These reactions proceed via a vinyl cation, which is captured by water and, notably, by C-nucleophiles, such as electron-rich (hetero)arenes.
Collapse
Affiliation(s)
- Jaime Tostado
- Universidad de Alcalá (IRYCIS).
Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| | - Ana Milián
- Universidad de Alcalá (IRYCIS).
Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| | - Juan J. Vaquero
- Universidad de Alcalá (IRYCIS).
Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| | - Manuel A. Fernández-Rodríguez
- Universidad de Alcalá (IRYCIS).
Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Aynetdinova D, Jacques R, Christensen KE, Donohoe TJ. Alcohols as Efficient Intermolecular Initiators for a Highly Stereoselective Polyene Cyclisation Cascade. Chemistry 2023; 29:e202203732. [PMID: 36478469 PMCID: PMC10946764 DOI: 10.1002/chem.202203732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The use of benzylic and allylic alcohols in HFIP solvent together with Ti(Oi Pr)4 has been shown to trigger a highly stereoselective polyene cyclisation cascade. Three new carbon-carbon bonds are made during the process and complete stereocontrol of up to five new stereogenic centers is observed. The reaction is efficient, has high functional group tolerance and is atom-economic generating water as a stoichiometric by-product. A new polyene substrate-class is employed, and subsequent mechanistic studies indicate a stereoconvergent mechanism. The products of this reaction can be used to synthesize steroid-analogues in a single step.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Reece Jacques
- Early Chemical Development, Medicinal Chemistry R&DVertex PharmaceuticalsAbingtonOX14 4RWUK
| | | | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| |
Collapse
|
3
|
Kang J, Quynh Le T, Oh CH. Recent advances in abietane/icetexane synthesis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Chen D, Jones EV, Williams CW, Huynh TN, McPhail TC, France S. Intramolecular, Interrupted Homo‐Nazarov Cascade Biscyclizations to Angular (Hetero)Aryl‐Fused Polycycles. Chemistry 2022; 28:e202201368. [DOI: 10.1002/chem.202201368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Doris Chen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Elizabeth V. Jones
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Corey W. Williams
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Tan‐Khang N. Huynh
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Tristan C. McPhail
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Stefan France
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
- Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
5
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
6
|
García-Pedrero O, Rodríguez F. Cationic cyclization reactions with alkyne terminating groups: a useful tool in biomimetic synthesis. Chem Commun (Camb) 2022; 58:1089-1099. [PMID: 34989726 DOI: 10.1039/d1cc05826f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclization reactions through cationic intermediates have become a highly valuable tool in organic synthesis. The use of alkynes as the terminating group in this type of cationic process offers wide synthetic possibilities because this group can serve as a precursor of different functionalities. This article shows relevant examples of cationic cyclization reactions with alkynes as terminating groups with the intention of demonstrating the potential of this type of process, particularly in the context of biomimetic synthesis of natural products.
Collapse
Affiliation(s)
- Olaya García-Pedrero
- Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería, 8, Oviedo-33006, Spain.
| | - Félix Rodríguez
- Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo, Julián Clavería, 8, Oviedo-33006, Spain.
| |
Collapse
|
7
|
Chanda R, Kar A, Das A, Chakraborty B, Jana U. Iron-catalyzed carboarylation of alkynes via activation of π-activated alcohols: rapid synthesis of substituted benzofused six-membered heterocycles. Org Biomol Chem 2021; 19:5155-5160. [PMID: 34037047 DOI: 10.1039/d1ob00488c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An Fe(OTf)3-catalysed carboarylation of alkynes is reported for the straightforward synthesis of densely substituted 1,2-dihydroquinolines from N-propargyl anilides and π-activated alcohols. The reaction provides a new method for the synthesis of highly substituted benzofused six-membered heterocycles by the formation of two carbon-carbon bonds and one ring in a single step. The power of the methodology was further extended to the synthesis of substituted chromene and thiochromene derivatives in high yields. In addition, substituted quinoline derivatives were also achieved in a single step in the presence of FeCl3 through detosylation/aromatisation. A number of control experiments have been performed and a plausible mechanism has also been proposed to explain the formation of the products.
Collapse
Affiliation(s)
- Rupsa Chanda
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Aniruddha Das
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Baitan Chakraborty
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
8
|
Cala L, Rubio-Presa R, García-Pedrero O, Fañanás FJ, Rodríguez F. Synthesis of Spirocyclic Compounds by a Ring-Expansion/Cationic Cyclization Cascade Reaction of Chlorosulfate Derivatives. Org Lett 2020; 22:3846-3849. [PMID: 32338929 DOI: 10.1021/acs.orglett.0c01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel cascade reaction to prepare spirocarbocyclic compounds from chlorosulfate derivatives has been developed. The process involves an unusual thermal elimination of the chlorosulfate moiety, a ring-expansion reaction, and a subsequent cationic cyclization reaction. Despite the relatively complex skeletal rearrangement, the reaction described here is featured by its operational simplicity, being just a thermal process that does not require additional reagents, catalysts, or additives.
Collapse
Affiliation(s)
- Lara Cala
- Instituto Universitario de Quı́mica Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| | - Rubén Rubio-Presa
- Instituto Universitario de Quı́mica Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| | - Olaya García-Pedrero
- Instituto Universitario de Quı́mica Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| | - Francisco J Fañanás
- Instituto Universitario de Quı́mica Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| | - Félix Rodríguez
- Instituto Universitario de Quı́mica Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain
| |
Collapse
|