1
|
Tiwari B, Pandey RP, Hussain N. Recent advances in the synthesis of SGLT2 Inhibitors and natural products from carbohydrates. Carbohydr Res 2025; 552:109477. [PMID: 40194327 DOI: 10.1016/j.carres.2025.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Gliflozins are an important class of drugs used in the treatment of type 2 diabetes, a serious and prevalent condition in modern times. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors represent a recent advancement in diabetes treatment, effectively lowering blood sugar levels in patients with type 2 diabetes. Many monosaccharides and their derivatives, such as glycals, play a key role as building blocks in the synthesis of glycosides, particularly C-glycosides, which possess unique structural stability and biological significance. These compounds are crucial in the total synthesis of natural drugs, branched sugars, and other biologically active molecules. This review highlights the recent advancement in the synthesis of SGLT-2 inhibitors and natural products synthesized from carbohydrates made between 2010 and 2024.
Collapse
Affiliation(s)
- Bindu Tiwari
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Pratap Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nazar Hussain
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Gaurav A, Mandal PK. Synthesis of aryl thioglycosides by metal-free arylation of glycosyl thiols with diaryliodonium salts under basic conditions. Carbohydr Res 2025; 552:109437. [PMID: 40014945 DOI: 10.1016/j.carres.2025.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Herein, we demonstrate the application of unsymmetrical iodonium salts towards S-arylation of glycosyl thiols under metal-free conditions, affording a various stereoretentive thioarylglycosides in moderate to good yields. The application of an inorganic base Cs2CO3 enables the C-S bond formation under mild and experimentally simple conditions at room temperature. The proper choice of auxiliary of the unsymmetrical iodonium salt enables the access to diverse functionalized aryl moieties including biphenyl groups and its incorporation into thioarylglycosides.
Collapse
Affiliation(s)
- Anand Gaurav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Zhang JD, Liu GJ, Xing GW. β-Stereoselective Kdo C-glycosylation by a ( p-Tol) 2SO/Tf 2O preactivation strategy. Chem Commun (Camb) 2025; 61:1677-1680. [PMID: 39745234 DOI: 10.1039/d4cc06149g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
There is very little research on the synthesis of β-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) C-glycosides, which restricted their widespread application. Herein, a convenient and efficient approach to synthesize β-Kdo C-glycosides was developed based on a Tf2O/(p-Tol)2SO preactivation strategy using bench stable peracetylated Kdo thioglycoside as a donor via a thermodynamic SN1-like mechanism.
Collapse
Affiliation(s)
- Jing-Dong Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
4
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Lukas F, Findlay MT, Fillols M, Templ J, Savino E, Martin B, Allmendinger S, Furegati M, Noël T. Graphitic Carbon Nitride as a Photocatalyst for Decarboxylative C(sp 2)-C(sp 3) Couplings via Nickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405902. [PMID: 38807439 DOI: 10.1002/anie.202405902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The development of robust and reliable methods for the construction of C(sp2)-C(sp3) bonds is vital for accessing an increased array of structurally diverse scaffolds in drug discovery and development campaigns. While significant advances towards this goal have been achieved using metallaphotoredox chemistry, many of these methods utilise photocatalysts based on precious-metals due to their efficient redox processes and tuneable properties. However, due to the cost, scarcity, and toxicity of these metals, the search for suitable replacements should be a priority. Here, we show the use of commercially available heterogeneous semiconductor graphitic carbon nitride (gCN) as a photocatalyst, combined with nickel catalysis, for the cross-coupling between aryl halide and carboxylic acid coupling partners. gCN has been shown to engage in single-electron-transfer (SET) and energy-transfer (EnT) processes for the formation of C-X bonds, and in this manuscript we overcome previous limitations to furnish C-C over C-O bonds using carboxylic acids. A broad scope of both aryl halides and carboxylic acids is presented, and recycling of the photocatalyst demonstrated. The mechanism of the reaction is also investigated.
Collapse
Affiliation(s)
- Florian Lukas
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michael T Findlay
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Méritxell Fillols
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johanna Templ
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/E163, 1060, Vienna, Austria
| | - Elia Savino
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Upadhyaya K, Dubbu S. Advancing carbohydrate functionality: The role of hypervalent iodine. Carbohydr Res 2024; 542:109175. [PMID: 38865797 DOI: 10.1016/j.carres.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Hypervalent iodine reagents have undergone significant development and widespread application in the functionalization of carbohydrates. This is primarily attributed to their exceptional properties, including mildness, ease of handling, high selectivity, environmental friendliness, and stability. This review aims to emphasize the utilization of hypervalent iodine compounds in the functionalization of carbohydrates. The present article covers various aspects, including glycal functionalization, C-H or N-H insertion reactions, O-arylations, C-2 deoxy-2-iodo glycoconjugates, iminosugars, and C3-oxo-glycals, achieved through the use of hypervalent iodine reagents/catalysts. Additionally, it explores hypervalent iodine-mediated bioactive 1,3,5-trioxocane synthesis followed by rare sugars synthesis.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sateesh Dubbu
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Mahanti M, Bhaskar Pal K, Wallentin CJ, Galan MC. Hypervalent Iodine Compounds in Carbohydrate Chemistry: Glycosylation, Functionalization and Oxidation. Chemistry 2024; 30:e202400087. [PMID: 38349955 DOI: 10.1002/chem.202400087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/15/2024]
Abstract
This mini review article provides an overview on the use of hypervalent iodine compounds (HICs) in carbohydrate synthesis, focusing on their chemistry and recent applications. HICs are similar to transition metals in their reactivity but have the added benefit of being environmentally benign, and are therefore commonly used as selective oxidants and eco-friendly reagents in organic synthesis. Herein, we summarize various synthetic uses of hypervalent iodine reagents in reactions such as glycosylation, oxidations, functionalization, and C-C bond-forming reactions. The goal of this review is to illustrate the advantages and versatility of using HICs as an environmentally sustainable alternative to heavy metals in carbohydrate chemistry.
Collapse
Affiliation(s)
- Mukul Mahanti
- School of Chemistry, University of Bristol Cantock's Close, BS81TS, Bristol, United Kingdom
| | - Kumar Bhaskar Pal
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90, Gothenburg, Sweden
| | - Carl Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90, Gothenburg, Sweden
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close, BS81TS, Bristol, United Kingdom
| |
Collapse
|
8
|
Sharma MK, Tiwari B, Hussain N. Pd-catalyzed stereoselective synthesis of chromone C-glycosides. Chem Commun (Camb) 2024; 60:4838-4841. [PMID: 38619439 DOI: 10.1039/d4cc00486h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, we present an efficient Pd-catalysed method for stereoselective synthesis of chromone C-glycosides from various glycals. We successfully applied this method to various glycals with different protecting groups, yielding the corresponding glycosides in 41-78% yields. Additionally, we investigated the potential of this approach for the late-stage modification of natural products and pharmaceutical compounds linked to glycals, leading to the synthesis of their respective glycosides. Furthermore, we extended our research to gram-scale synthesis and demonstrated its applicability in producing various valuable products, including 2-deoxy-chromone C-glycosides. In summary, our work introduces a novel library of chromone glycosides, which holds promise for advancing drug discovery efforts.
Collapse
Affiliation(s)
- Manish Kumar Sharma
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
| | - Bindu Tiwari
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
| | - Nazar Hussain
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
9
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
10
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
11
|
Yoritate M, Hirai G, Yasutomi H, Takeda D, Higashibayashi S, Sugai T. Transition-Metal-Free β-Selective C-Glycosylation of β-Glycosyl Boronates via Stereoretentive 1,2-Migration. Synlett 2023; 34:347-352. [DOI: 10.1055/a-1989-2541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractC-Glycoside analogues of native glycans are useful molecular tools for medicinal chemistry and chemical biology due to their resistance to cellular glycoside hydrolases. We previously reported an α-selective direct C-glycosylation of 2-deoxy-β-glycosyl boronate through a Ni/photoredox-catalyzed stereoinvertive cross-coupling reaction. Here we report a complementary stereoretentive synthetic method for the preparation of β-C-glycosides from a similar boronate precursor through the addition of a C(sp2) anion followed by 1,2-migration of the glycosyl donor.
Collapse
Affiliation(s)
- Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Hiroki Yasutomi
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Daiki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | |
Collapse
|
12
|
Kurahayashi K, Hanaya K, Sugai T, Hirai G, Higashibayashi S. Copper-Catalyzed Stereoselective Borylation and Palladium-Catalyzed Stereospecific Cross-Coupling to Give Aryl C-Glycosides. Chemistry 2023; 29:e202203376. [PMID: 36344464 DOI: 10.1002/chem.202203376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Metabolically stable C-glycosides are an essential family of compounds in bioactive natural products, therapeutic agents, and biological probes. For their application, development of synthetic methods by connecting glycosides and aglycons with strict stereocontrol at the anomeric carbon, as well as with high functional-group compatibility and environmental compatibility is a pivotal issue. Although Suzuki-Miyaura-type C(sp3 )-C(sp2 ) cross-coupling using glycosyl boronates is a potential candidate for the construction of C-glycosides, neither the cross-coupling itself nor the facile synthesis of the coupling precursor, glycosyl boronates, have been achieved to date. Herein, it was succeeded to develop a copper-catalyzed stereoselective one-step borylation of glycosyl bromides to glycosyl boronates and palladium-catalyzed stereospecific cross-coupling of β-glycosyl borates with aryl bromides to give aryl β-C-glycosides, in which the β-configuration of the anomeric carbon of the glycosyl trifluoroborates is stereoretentively transferred to that of the resulting aryl C-glycosides.
Collapse
Affiliation(s)
- Kazuki Kurahayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
13
|
Liu CF. Recent Advances on Natural Aryl- C-glycoside Scaffolds: Structure, Bioactivities, and Synthesis-A Comprehensive Review. Molecules 2022; 27:7439. [PMID: 36364266 PMCID: PMC9654268 DOI: 10.3390/molecules27217439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/23/2023] Open
Abstract
Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl-C-glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl-C-glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities-including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects-as well as their synthesis.
Collapse
Affiliation(s)
- Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
14
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C-H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta-C-Aryl Glycosides. Angew Chem Int Ed Engl 2022; 61:e202208620. [PMID: 35877556 PMCID: PMC9825995 DOI: 10.1002/anie.202208620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of C-aryl glycosides in biologically active natural products and approved drugs has long motivated the development of efficient strategies for their selective synthesis. Cross-couplings have been frequently used, but largely relied on palladium catalyst with prefunctionalized substrates, while ruthenium-catalyzed C-aryl glycoside preparation has thus far proven elusive. Herein, we disclose a versatile ruthenium(II)-catalyzed meta-C-H glycosylation to access meta-C-aryl glycosides from readily available glycosyl halide donors. The robustness of the ruthenium catalysis was reflected by mild reaction conditions, outstanding levels of anomeric selectivity and exclusive meta-site-selectivity.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Julia Pöhlmann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Takuya Michiyuki
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| |
Collapse
|
15
|
Gou X, Li Y, Shi W, Luan Y, Ding Y, An Y, Huang Y, Zhang B, Liu X, Liang Y. Ruthenium‐Catalyzed Stereo‐ and Site‐Selective
ortho‐
and
meta
‐C−H Glycosylation and Mechanistic Studies. Angew Chem Int Ed Engl 2022; 61:e202205656. [DOI: 10.1002/anie.202205656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xue‐Ya Gou
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong Shatin Hong Kong China
| | - Wei‐Yu Shi
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yu‐Yong Luan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ya‐Nan Ding
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yan‐Chong Huang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Bo‐Sheng Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
16
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C–H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta‐C‐Aryl Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Wu
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | | | - Julia Pöhlmann
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Takuya Michiyuki
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Binbin Yuan
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Lutz Ackermann
- Georg-August-Universitaet Goettingen Institut fuer Organische und Biomolekulare Chemie Tammannstr. 2 37077 Goettingen GERMANY
| |
Collapse
|
17
|
Gou X, Li Y, Shi W, Luan Y, Ding Y, An Y, Huang Y, Zhang B, Liu X, Liang Y. Ruthenium‐Catalyzed Stereo‐ and Site‐Selective
ortho‐
and
meta
‐C−H Glycosylation and Mechanistic Studies. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue‐Ya Gou
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong Shatin Hong Kong China
| | - Wei‐Yu Shi
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yu‐Yong Luan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ya‐Nan Ding
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yan‐Chong Huang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Bo‐Sheng Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
18
|
Shi WY, Li HY, Gou XY, Luan YY, Zheng N, Zhang Z, Niu ZJ, Liu XY, Liang YM. Synthesis of C‐Aryl Glycosides via Ru‐catalyzed remote C‐H Glycosylation of 8‐Aminoquinoline Amides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Gu XS, Xiong Y, Yang F, Yu N, Yan PC, Xie JH, Zhou QL. Enantioselective Hydrogenation toward Chiral 3-Aryloxy Tetrahydrofurans Enabled by Spiro Ir-PNN Catalysts Containing an Unusual 5-Substituted Chiral Oxazoline Unit. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xue-Song Gu
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Xiong
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Yu
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pu-Cha Yan
- Raybow (Hangzhou) Pharmaceutical CO., Ltd. Hangzhou 310018, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Hussain N, Hussain A. Advances in Pd-catalyzed C-C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules. RSC Adv 2021; 11:34369-34391. [PMID: 35497292 PMCID: PMC9042403 DOI: 10.1039/d1ra06351k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in the Pd-catalyzed synthesis of C-glycosides and branched sugars are summarized herein and the strategies are categorized based on named reactions or types of sugar moieties involved in the reactions. These include cross-coupling reactions, C-H activations, and carbonylative cross-coupling reactions. Applications of Pd-catalyzed C-glycosylation reactions are discussed in the synthesis of natural products and biologically active molecules such as bergenin, papulacandin D, and SGLT2-inhibitors. Important mechanistic cycles are drawn and the mechanisms for how Pd-activates the sugar moieties for various coupling partners are discussed. The directing group-assisted C-glycosylation and some intramolecular C-H activation reactions are also included.
Collapse
Affiliation(s)
- Nazar Hussain
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU Varanasi-221005 India
| | - Altaf Hussain
- Department of Chemistry, Govt. Degree College Poonch J&K India 185101
| |
Collapse
|
21
|
Abstract
Stereoselective reactions at the anomeric carbon constitute the cornerstone of preparative carbohydrate chemistry. Here, we report stereoselective C-arylation and etherification reactions of anomeric trifluoroborates derived from BMIDA esters. These reactions are characterized by high anomeric selectivities for 2-deoxysugars and broad substrate scope (24 examples), including disaccharides and trifluoroborates with free hydroxyl groups. Taken together, this new class of carbohydrate reagents adds the palette of anomeric nucleophile reagents suitable for efficient installation of C-C bonds.
Collapse
Affiliation(s)
- Eric M Miller
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
de Matos AM, Calado P, Washburn W, Rauter AP. Recent Advances on
SGLT
2 Inhibitors: Synthetic Approaches, Therapeutic Benefits, and Adverse Events. SUCCESSFUL DRUG DISCOVERY 2021:111-157. [DOI: 10.1002/9783527826872.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
23
|
Ghouilem J, Tran C, Grimblat N, Retailleau P, Alami M, Gandon V, Messaoudi S. Diastereoselective Pd-Catalyzed Anomeric C(sp3)–H Activation: Synthesis of α-(Hetero)aryl C-Glycosides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juba Ghouilem
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 S2002LRK, Rosario, República Argentina
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
- Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay Cedex, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
24
|
Li S, Jaszczyk J, Pannecoucke X, Poisson T, Martin OR, Nicolas C. Stereospecific Synthesis of Glycoside Mimics Through Migita‐Kosugi‐Stille Cross‐Coupling Reactions of Chemically and Configurationally Stable 1‐
C
‐Tributylstannyl Iminosugars. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sizhe Li
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Justyna Jaszczyk
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Xavier Pannecoucke
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Thomas Poisson
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
- Institut Universitaire de France 1 rue Descartes 75231 Paris France
| | - Olivier R. Martin
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| |
Collapse
|
25
|
Ghouilem J, de Robichon M, Le Bideau F, Ferry A, Messaoudi S. Emerging Organometallic Methods for the Synthesis of C-Branched (Hetero)aryl, Alkenyl, and Alkyl Glycosides: C-H Functionalization and Dual Photoredox Approaches. Chemistry 2020; 27:491-511. [PMID: 32813294 DOI: 10.1002/chem.202003267] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal-catalyzed C-H functionalization and photoredox nickel dual catalysis have emerged as innovative and powerful avenues for the synthesis of C-branched glycosides. These two concepts have been recently established and provide efficient and mild methods for accessing a series of valuable complex C-branched glycosides of great interest. Herein, recent developments in the synthesis of C-branched aryl/alkenyl/alkyl glycosides through these two approaches are highlighted.
Collapse
Affiliation(s)
- Juba Ghouilem
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Morgane de Robichon
- CY Cergy-Paris Université, BioCIS, Equipe de Chimie Biologique, CNRS, 95000, Neuville sur Oise, France
| | - Franck Le Bideau
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Angélique Ferry
- CY Cergy-Paris Université, BioCIS, Equipe de Chimie Biologique, CNRS, 95000, Neuville sur Oise, France
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| |
Collapse
|
26
|
Talode J, Kato D, Nagae H, Tsurugi H, Seki M, Mashima K. Syntheses of SGLT2 Inhibitors by Ni- and Pd-Catalyzed Fukuyama Coupling Reactions. J Org Chem 2020; 85:12382-12392. [PMID: 32911934 DOI: 10.1021/acs.joc.0c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel- and palladium-catalyzed Fukuyama coupling reactions of a d-gluconolactone-derived thioester with arylzinc reagents at ambient temperature provided the corresponding multifunctional aryl ketones in high yield. Ligand screening for the nickel-catalyzed Fukuyama coupling reactions indicated that 1,2-bis(dicyclohexylphosphino)ethane (dCype) served as a superior supporting ligand to improve the product yield. In addition, Pd/C was a practical alternative that enabled ligand-free Fukuyama coupling reactions and was efficiently applied to the key C-C bond-forming step to prepare canagliflozin and dapagliflozin, which are diabetic SGLT2 inhibitors of current interest.
Collapse
Affiliation(s)
- Jalindar Talode
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Daiki Kato
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahiko Seki
- MA Group, Tokuyama Corporation, Tsukuba, Ibaraki 300-4247, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
27
|
Lv W, Chen Y, Wen S, Ba D, Cheng G. Modular and Stereoselective Synthesis of C-Aryl Glycosides via Catellani Reaction. J Am Chem Soc 2020; 142:14864-14870. [PMID: 32808778 DOI: 10.1021/jacs.0c07634] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe a Catellani-type C-H glycosylation to provide rapid access to various highly decorated α-C-(hetero)aryl glycosides in a modular and stereoselective manner (>90 examples). The termination step is flexible, which is demonstrated by ipso-Heck reaction, hydrogenation, Suzuki coupling, and Sonogashira coupling. Application of this methodology has been showcased by preparing glycoside-pharmacophore conjugates and a dapagliflozin analogue. Notably, the technology developed herein represents an unprecedented example of Catellani-type alkylation involving an SN1 pathway.
Collapse
Affiliation(s)
- Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
28
|
Li M, Qiu YF, Wang CT, Li XS, Wei WX, Wang YZ, Bao QF, Ding YN, Shi WY, Liang YM. Visible-Light-Induced Pd-Catalyzed Radical Strategy for Constructing C-Vinyl Glycosides. Org Lett 2020; 22:6288-6293. [PMID: 32806189 DOI: 10.1021/acs.orglett.0c02053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel visible-light-induced palladium-catalyzed Heck reaction for bromine sugars and aryl olefins with high regio- and stereochemistry selectivity for the preparation of C-glycosyl styrene is described. This reaction takes place in one step at room temperature by using a simple and readily available starting material. This protocol can be scaled up to a wide range of glycosyl bromide donors and aryl olefin substrates. Mechanistic studies indicate that a radical addition pathway is involved.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Zhu F, Zhang SQ, Chen Z, Rui J, Hong X, Walczak MA. Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles. J Am Chem Soc 2020; 142:11102-11113. [PMID: 32479072 DOI: 10.1021/jacs.0c03298] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbohydrates, one of the three primary macromolecules of living organisms, play significant roles in various biological processes such as intercellular communication, cell recognition, and immune activity. While the majority of established methods for the installation of carbohydrates through the anomeric carbon rely on nucleophilic displacement, anomeric radicals represent an attractive alternative because of their functional group compatibility and high anomeric selectivities. Herein, we demonstrate that anomeric nucleophiles such as C1 stannanes can be converted into anomeric radicals by merging Cu(I) catalysis with blue light irradiation to achieve highly stereoselective C(sp3)-S cross-coupling reactions. Mechanistic studies and DFT calculations revealed that the C-S bond-forming step occurs via the transfer of the anomeric radical directly to a sulfur electrophile bound to Cu(II) species. This pathway complements a radical chain observed for photochemical metal-free conditions where a disulfide initiator can be activated by a Lewis base additive. Both strategies utilize anomeric nucleophiles as efficient radical donors and achieve a switch from an ionic to a radical pathway. Taken together, the stability of glycosyl nucleophiles, a broad substrate scope, and high anomeric selectivities observed for the thermal and photochemical protocols make this novel C-S cross coupling a practical tool for late-stage glycodiversification of bioactive natural products and drug candidates.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zhenhao Chen
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Jinyan Rui
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
30
|
Liaw MW, Cheng WF, Tong R. C-Aryl Glycosylation: Palladium-Catalyzed Aryl-Allyl Coupling of Achmatowicz Rearrangement Products with Arylboronic Acids. J Org Chem 2020; 85:6663-6674. [PMID: 32314587 DOI: 10.1021/acs.joc.0c00688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The first Pd-catalyzed arylation of Achmatowicz rearrangement products with arylboronic acids under mild conditions (rt) to provide the synthetically versatile C-aryl dihydropyranones is reported. It is found that the 4-keto group of Achmatowicz products is essential to increase the reactivity of the Pd-π-allyl complex toward arylboronic acids and that phosphine as the palladium ligand would be destructive to the reaction. This new coupling method addresses the major limitations of previous Pd-catalyzed allyl-aryl couplings of 2,3-unsaturated glycosides with an aryl Grignard or aryl zinc reagent.
Collapse
Affiliation(s)
- Ming Wai Liaw
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wai Fung Cheng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
31
|
Pal KB, Lee J, Das M, Liu XW. Palladium(ii)-catalyzed stereoselective synthesis of C-glycosides from glycals with diaryliodonium salts. Org Biomol Chem 2020; 18:2242-2251. [PMID: 32159571 DOI: 10.1039/d0ob00247j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient palladium(ii) mediated C-glycosylation of glycals with diaryliodonium salts is described, providing a new strategy for the synthesis of 2,3-dideoxy C-aryl glycosides with excellent stereoselectivity. The C-glycosylation of a diverse range of glycals, including d-glucal, d-galactal, d-allal, l-rhamnal, l-fucal, l-arabinal, d-maltal, and d-lactal, occurred effectively and the corresponding C-glycosides were obtained in moderate to good yields. This protocol is commended as a significant addition to the field of carbohydrate chemistry due to the rich functional group compatibility, broad range of substrate scope and exceptional α-stereoselectivity.
Collapse
Affiliation(s)
- Kumar Bhaskar Pal
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Jiande Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371. and Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| |
Collapse
|
32
|
Tamburrini A, Colombo C, Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med Res Rev 2020; 40:495-531. [DOI: 10.1002/med.21625] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Tamburrini
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Cinzia Colombo
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Anna Bernardi
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| |
Collapse
|
33
|
Lee V. Application of copper(i) salt and fluoride promoted Stille coupling reactions in the synthesis of bioactive molecules. Org Biomol Chem 2020; 17:9095-9123. [PMID: 31596305 DOI: 10.1039/c9ob01602c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Stille coupling between organostannanes and organohalides is an effective catalytic method for organic synthesis. Despite the ample amount of published results in this area, finding the optimal conditions for this transformation is often not straightforward. It was observed that this reaction could be accelerated with improved efficiency by the addition of a Cu(i) salt and fluoride. This review summarises the application of this simple protocol in the synthesis of natural products, their analogues and other biologically active molecules, from 2004 to 2018.
Collapse
Affiliation(s)
- Victor Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
34
|
Otte F, Schmidt B. Matsuda–Heck Arylation of Glycals for the Stereoselective Synthesis of Aryl C-Glycosides. J Org Chem 2019; 84:14816-14829. [DOI: 10.1021/acs.joc.9b02410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fabian Otte
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Liu J, Lei C, Gong H. Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9501-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Pramanick PK, Zhou Z, Hou ZL, Yao B. Free Amino Group-Directed γ-C(sp3)–H Arylation of α-Amino Esters with Diaryliodonium Triflates by Palladium Catalysis. J Org Chem 2019; 84:5684-5694. [DOI: 10.1021/acs.joc.9b00605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pranab K. Pramanick
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhibing Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhen-Lin Hou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
37
|
Gao W, Jiang JS, Chen Z, Yang YN, Feng ZM, Zhang X, Yuan X, Zhang PC. Stereospecific acyloin ring contraction controlled by glucose and concise total synthesis of saffloneoside. Org Chem Front 2019. [DOI: 10.1039/c9qo00279k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saffloneoside (1), a structurally unusual p-hydroxycinnamylcyclopentenone C-glucoside obtained from the florets of Carthamus tinctorius, was synthesized on a gram scale in seven steps.
Collapse
Affiliation(s)
- Wan Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| | - Zhong Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- P.R. China
| |
Collapse
|
38
|
Zhu F, Rodriguez J, O’Neill S, Walczak MA. Acyl Glycosides through Stereospecific Glycosyl Cross-Coupling: Rapid Access to C(sp 3)-Linked Glycomimetics. ACS CENTRAL SCIENCE 2018; 4:1652-1662. [PMID: 30648149 PMCID: PMC6311691 DOI: 10.1021/acscentsci.8b00628] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 05/04/2023]
Abstract
Replacement of a glycosidic bond with hydrolytically stable C-C surrogates is an efficient strategy to access glycomimetics with improved physicochemical and pharmacological properties. We describe here a stereoretentive cross-coupling reaction of glycosyl stannanes with C(sp2)- and C(sp3)-thio(seleno)esters suitable for the preparation C-acyl glycosides as synthetic building blocks to obtain C(sp3)-linked and fluorinated glycomimetics. First, we identified a set of standardized conditions employing a Pd(0) precatalyst, CuCl additive, and phosphite ligand that provided access to C-acyl glycosides without deterioration of anomeric integrity and decarbonylation of the acyl donors (>40 examples). Second, we demonstrated that C(sp3)-glycomimetics could be introduced into the anomeric position via a direct conversion of C1 ketones. Specifically, the conversion of the carbonyl group into a CF2 mimetic is an appealing method to access valuable fluorinated analogues. We also illustrate that the introduction of other carbonyl-based groups into the C1 position of mono- and oligosaccharides can be accomplished using the corresponding acyl donors. This protocol is amenable to late-stage glycodiversification and programmed mutation of the C-O bond into hydrolytically stable C-C bonds. Taken together, stereoretentive anomeric acylation represents a convenient method to prepare a diverse set of glycan mimetics with minimal synthetic manipulations and with absolute control of anomeric configuration.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Jacob Rodriguez
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Sloane O’Neill
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
39
|
Zhu F, O'Neill S, Rodriguez J, Walczak MA. Rethinking Carbohydrate Synthesis: Stereoretentive Reactions of Anomeric Stannanes. Chemistry 2018; 25:3147-3155. [PMID: 30051523 DOI: 10.1002/chem.201803082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Indexed: 12/29/2022]
Abstract
In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon-metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| | - Maciej A Walczak
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, United States
| |
Collapse
|
40
|
Liu J, Gong H. Stereoselective Preparation of α- C-Vinyl/Aryl Glycosides via Nickel-Catalyzed Reductive Coupling of Glycosyl Halides with Vinyl and Aryl Halides. Org Lett 2018; 20:7991-7995. [PMID: 30525666 DOI: 10.1021/acs.orglett.8b03567] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Facile preparation of the α- C-vinyl and -aryl glycosides has been developed via mild Ni-catalyzed reductive vinylation and arylation of C1-glycosyl halides with vinyl/aryl halides. Good to high α-selectivities were achieved for C-glucosides, galactosides, maltoside, and mannosides, which were dictated by the employment of pyridine type ligands. As such, the present work represents unprecedented control for a high level of α-selectivity for C-vinyl-glucosides using cross-coupling approaches and offers hitherto optimal α-selective preparation of C-aryl glucosides via catalyst-controlled coupling strategies.
Collapse
Affiliation(s)
- Jiandong Liu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry , Shanghai University , 99 Shang-Da Road , Shanghai 200444 , China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry , Shanghai University , 99 Shang-Da Road , Shanghai 200444 , China
| |
Collapse
|
41
|
Yi D, Zhu F, Walczak MA. Stereoretentive Intramolecular Glycosyl Cross-Coupling: Development, Scope, and Kinetic Isotope Effect Study. Org Lett 2018; 20:4627-4631. [DOI: 10.1021/acs.orglett.8b01927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Duk Yi
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Feng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
42
|
Probst N, Grelier G, Dahaoui S, Alami M, Gandon V, Messaoudi S. Palladium(II)-Catalyzed Diastereoselective 2,3-Trans C(sp3)–H Arylation of Glycosides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nicolas Probst
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92290, France
| | - Gwendal Grelier
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, Gif-sur-Yvette 91198, France
| | - Slimane Dahaoui
- Cristallographie, Résonance Magnétique et Modélisations (CRM2), UMR UL-CNRS 7036, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, Vandœuvre-lès-Nancy 54506 Cedex, France
| | - Mouâd Alami
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92290, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Université Paris-Saclay, route de Saclay, Palaiseau 91128 Cedex, France
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
| | - Samir Messaoudi
- BioCIS, Université Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry 92290, France
| |
Collapse
|
43
|
Zhu F, O'Neill S, Rodriguez J, Walczak MA. Stereoretentive Reactions at the Anomeric Position: Synthesis of Selenoglycosides. Angew Chem Int Ed Engl 2018; 57:7091-7095. [DOI: 10.1002/anie.201802847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Maciej A. Walczak
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| |
Collapse
|
44
|
Zhu F, O'Neill S, Rodriguez J, Walczak MA. Stereoretentive Reactions at the Anomeric Position: Synthesis of Selenoglycosides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Maciej A. Walczak
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| |
Collapse
|
45
|
Singh AK, Kandasamy J. Palladium catalyzed stereocontrolled synthesis of C-aryl glycosides using glycals and arenediazonium salts at room temperature. Org Biomol Chem 2018; 16:5107-5112. [DOI: 10.1039/c8ob01393d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of glycals underwent C-arylation with aryldiazonium tetrafluoroborates and provided synthetically useful 2,3-deoxy 3-keto α-aryl-C-glycosides in good to excellent yields.
Collapse
Affiliation(s)
- Adesh Kumar Singh
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi
- India
| | | |
Collapse
|