1
|
Awale S, Baba H, Phan ND, Kim MJ, Maneenet J, Sawaki K, Kanda M, Okumura T, Fujii T, Okada T, Maruyama T, Okada T, Toyooka N. Targeting Pancreatic Cancer with Novel Plumbagin Derivatives: Design, Synthesis, Molecular Mechanism, In Vitro and In Vivo Evaluation. J Med Chem 2023. [PMID: 37257133 DOI: 10.1021/acs.jmedchem.3c00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pancreatic tumors grow in an "austerity" tumor microenvironment characterized by nutrient deprivation and hypoxia. This leads to the activation of adaptive pathways in pancreatic cancer cells, promoting tolerance to nutrition starvation and aggressive malignancy. Conventional anticancer drugs are often ineffective against tumors that grow in such austerity condition. Plumbagin, a plant-derived naphthoquinone, has shown potent preferential cytotoxicity against pancreatic cancer cells under nutrient-deprived conditions. Therefore, we synthesized a series of plumbagin derivatives and found that 2-(cyclohexylmethyl)-plumbagin (3f) was the most promising compound with a PC50 value of 0.11 μM. Mechanistically, 3f was found to inhibit the PI3K/Akt/mTOR signaling pathways, leading to cancer cell death under nutrient-deprived conditions. In vivo studies using pancreatic cancer xenograft mouse models confirmed the efficacy of 3f, demonstrating significant inhibition of tumor growth in a dose-dependent manner. Compound 3f represents a highly promising lead for anticancer drug development based on an antiausterity strategy.
Collapse
Affiliation(s)
- Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hayato Baba
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nguyen Duy Phan
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Juthamart Maneenet
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Koichi Sawaki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Maruyama
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Okada
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
2
|
Mechanistic insights into entropy-driven 1,2-type Friedel-Crafts reaction with conformationally flexible guanidine-bisthiourea bifunctional organocatalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
|
4
|
Muthuvinothini A, Stella S. L-Cysteine capped Zn nanoparticles catalyzed synthesis of guanidines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1837169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Alagesan Muthuvinothini
- Department of Chemistry & Research Centre, Sarah Tucker College (Autonomous), Manonmaniam Sundaranar University, Tirunelveli, TN, India
| | - Selvaraj Stella
- Department of Chemistry & Research Centre, Sarah Tucker College (Autonomous), Manonmaniam Sundaranar University, Tirunelveli, TN, India
| |
Collapse
|
5
|
Orihara T, Kawaguchi M, Hosoya K, Tsutsumi R, Yamanaka M, Odagi M, Nagasawa K. Enantioselective Epoxidation of 2,3-Disubstituted Naphthoquinones by a Side Chain Truncated Guanidine-Urea Bifunctional Organocatalyst. J Org Chem 2020; 85:15232-15240. [PMID: 33147945 DOI: 10.1021/acs.joc.0c02084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An organocatalytic enantioselective epoxidation of 2,3-disubstituted naphthoquinones with tert-butyl hydroperoxide as an oxidant was developed using a guanidine-urea bifunctional catalyst lacking C2 symmetry, which was designed based upon the insights obtained from the DFT calculation model for our previous C2 symmetric catalyst. The present organocatalytic reaction provides access to a variety of optically active naphthoquinone epoxides bearing aryl and methyl substituents at C2 and C3 in high yields with high enantioselectivities (up to 97:3 er).
Collapse
Affiliation(s)
- Tatsuya Orihara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Masaki Kawaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Keisuke Hosoya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Ryosuke Tsutsumi
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, 171-8501 Tokyo, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, 171-8501 Tokyo, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588 Tokyo, Japan
| |
Collapse
|
6
|
Lu Q, Harmalkar DS, Choi Y, Lee K. An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies. Molecules 2019; 24:molecules24203778. [PMID: 31640154 PMCID: PMC6833478 DOI: 10.3390/molecules24203778] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/18/2022] Open
Abstract
Saturated oxygen heterocycles are widely found in a broad array of natural products and other biologically active molecules. In medicinal chemistry, small and medium rings are also important synthetic intermediates since they can undergo ring-opening and -expansion reactions. These applications have driven numerous studies on the synthesis of oxygen-containing heterocycles and considerable effort has been devoted toward the development of methods for the construction of saturated oxygen heterocycles. This paper provides an overview of the biological roles and synthetic strategies of saturated cyclic ethers, covering some of the most studied and newly discovered related natural products in recent years. This paper also reports several promising and newly developed synthetic methods, emphasizing 3-7 membered rings.
Collapse
Affiliation(s)
- Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| |
Collapse
|
7
|
Chou H, Leow D, Tan C. Recent Advances in Chiral Guanidine‐Catalyzed Enantioselective Reactions. Chem Asian J 2019; 14:3803-3822. [DOI: 10.1002/asia.201901183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hsiao‐Chieh Chou
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Dasheng Leow
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
8
|
Luo K, Zhao Y, Zhang J, He J, Huang R, Yan S, Lin J, Jin Y. Enantioselective Epoxypyrrolidines via a Tandem Cycloaddition/Autoxidation in Air and Mechanistic Studies. Org Lett 2018; 21:423-427. [PMID: 30588819 DOI: 10.1021/acs.orglett.8b03605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A tandem cycloaddition/autoxidation reaction between heterocyclic ketene aminals and diazoester in air is described for the enantioselective preparation of epoxypyrrolidines. Notably, the results of mechanistic studies suggest that epoxide was oxidized from an sp3 C-C single bond, which is of mechanistic and practical interest as this protocol may be suitable for constructing other bioactive heterocyclic epoxides.
Collapse
Affiliation(s)
- Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Jiawei Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Jia He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Shengjiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , P. R. China
| |
Collapse
|