1
|
Zuo Q, Li Y, Lai X, Bao G, Chen L, He Z, Song X, E R, Wang P, Shi Y, Luo H, Sun W, Wang R. Cysteine-Specific Multifaceted Bioconjugation of Peptides and Proteins Using 5-Substituted 1,2,3-Triazines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308491. [PMID: 38466927 DOI: 10.1002/advs.202308491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Peptide and protein postmodification have gained significant attention due to their extensive impact on biomolecule engineering and drug discovery, of which cysteine-specific modification strategies are prominent due to their inherent nucleophilicity and low abundance. Herein, the study introduces a novel approach utilizing multifunctional 5-substituted 1,2,3-triazine derivatives to achieve multifaceted bioconjugation targeting cysteine-containing peptides and proteins. On the one hand, this represents an inaugural instance of employing 1,2,3-triazine in biomolecular-specific modification within a physiological solution. On the other hand, as a powerful combination of precision modification and biorthogonality, this strategy allows for the one-pot dual-orthogonal functionalization of biomolecules utilizing the aldehyde group generated simultaneously. 1,2,3-Triazine derivatives with diverse functional groups allow conjugation to peptides or proteins, while bi-triazines enable peptide cyclization and dimerization. The examination of the stability of bi-triazines revealed their potential for reversible peptide modification. This work establishes a comprehensive platform for identifying cysteine-selective modifications, providing new avenues for peptide-based drug development, protein bioconjugation, and chemical biology research.
Collapse
Affiliation(s)
- Quan Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xuanliang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Lu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Xinyi Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Pengxin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Yuntao Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Huixin Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
2
|
De Angelis L, Haug GC, Rivera G, Biswas S, Al-Sayyed A, Arman H, Larionov O, Doyle MP. Site Reversal in Nucleophilic Addition to 1,2,3-Triazine 1-Oxides. J Am Chem Soc 2023; 145:13059-13068. [PMID: 37294869 PMCID: PMC10755600 DOI: 10.1021/jacs.3c01347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the most important reactions of 1,2,3-triazines with a dienophile is inverse electron demand Diels-Alder (IEDDA) cycloaddition, which occurs through nucleophilic addition to the triazine followed by N2 loss and cyclization to generate a heterocycle. The site of addition is either at the 4- or 6-position of the symmetrically substituted triazine core. Although specific examples of the addition of nucleophiles to triazines are known, a comprehensive understanding has not been reported, and the preferred site for nucleophilic addition is unknown and unexplored. With access to unsymmetrical 1,2,3-triazine-1-oxides and their deoxygenated 1,2,3-triazine compounds, we report C-, N-, H-, O-, and S-nucleophilic additions on 1,2,3-triazine and 1,2,3-triazine-1-oxide frameworks where the 4- and 6-positions could be differentiated. In the IEDDA cycloadditions using C- and N-nucleophiles, the site of addition is at C-6 for both heterocyclic systems, but product formation with 1,2,3-triazine-1-oxides is faster. Other N-nucleophile reactions with triazine 1-oxides show addition at either the 4- or 6-position of the triazine 1-oxide ring, but nucleophilic attack only occurs at the 6-position on the triazine. Hydride from NaBH4 undergoes addition at the 6-position on the triazine and the triazine 1-oxide core. Alkoxides show a high nucleophilic selectivity for the 4-position of the triazine 1-oxide. Thiophenoxide, cysteine, and glutathione undergo nucleophilic addition on the triazine core at the 6-position, while addition occurs at the 4-position of the triazine 1-oxide. These nucleophilic additions proceed under mild reaction conditions and show high functional group tolerance. Computational studies clarified the roles of the nucleophilic addition and nitrogen extrusion steps and the influence of steric and electronic factors in determining the outcomes of the reactions with different nucleophiles.
Collapse
Affiliation(s)
- Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Mexico
| | - Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ammar Al-Sayyed
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Biswas S, De Angelis L, Rivera G, Arman H, Doyle MP. Inverse Electron Demand Diels-Alder-Type Heterocycle Syntheses with 1,2,3-Triazine 1-Oxides: Expanded Versatility. Org Lett 2023; 25:1104-1108. [PMID: 36787541 DOI: 10.1021/acs.orglett.2c04360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
1,2,3-Triazine 1-oxides are remarkably effective substrates for inverse electron demand Diels-Alder reactions. Formed from vinyldiazoacetates via reaction with tert-butyl nitrite, these stable heterocyclic compounds undergo clean nucleophilic addition with amidines to form pyrimidines, with β-ketocarbonyl compounds and related nitrile derivatives to form polysubstituted pyridines and with 3/5-aminopyrazoles to form pyrazolo[1,5-a]pyrimidines, in high yield. These practical reactions are rapid at room temperature, are base catalyzed, and offer a diversity of structural modifications.
Collapse
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Luca De Angelis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, México
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
4
|
Wu ZC, Houk KN, Boger DL, Svatunek D. Mechanistic Insights into the Reaction of Amidines with 1,2,3-Triazines and 1,2,3,5-Tetrazines. J Am Chem Soc 2022; 144:10921-10928. [PMID: 35666564 PMCID: PMC9228069 DOI: 10.1021/jacs.2c03726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1,2,3-Triazines and 1,2,3,5-tetrazines react rapidly, efficiently, and selectively with amidines to form pyrimidines/1,3,5-triazines, exhibiting an orthogonal reactivity with 1,2,4,5-tetrazine-based conjugation chemistry. Whereas the mechanism of the reaction of the isomeric 1,2,4-triazines and 1,2,4,5-tetrazines with alkenes is well understood, the mechanism of the 1,2,3-triazine/1,2,3,5-tetrazine-amidine reaction as well as its intrinsic reactivity remains underexplored. By using 15N-labeling, kinetic investigations, and kinetic isotope effect studies, complemented by extensive computational investigations, we show that this reaction proceeds through an addition/N2 elimination/cyclization pathway, rather than the generally expected concerted or stepwise Diels-Alder/retro Diels-Alder sequence. The rate-limiting step in this transformation is the initial nucleophilic attack of an amidine on azine C4, with a subsequent energetically favored N2 elimination step compared with a disfavored stepwise formation of a Diels-Alder cycloadduct. The proposed reaction mechanism is in agreement with experimental and computational results, which explains the observed reactivity of 1,2,3-triazines and 1,2,3,5-tetrazines with amidines.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dale L Boger
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, California 92037, United States
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
5
|
Ou Yang CH, Liu WH, Yang S, Chiang YY, Shie JJ. Copper‐Mediated Synthesis of (E)‐β‐Aminoacrylonitriles from 1,2,3‐Triazine and Secondary Amines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Sheng Yang
- Academia Sinica Institute of Chemistry TAIWAN
| | | | - Jiun-Jie Shie
- Academia Sinica Institute of Chemistry 128 Academia Road, Section 2, Nankang 11529 Taipei TAIWAN
| |
Collapse
|
6
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
7
|
Quiñones RE, Wu ZC, Boger DL. Reaction Scope of Methyl 1,2,3-Triazine-5-carboxylate with Amidines and the Impact of C4/C6 Substitution. J Org Chem 2021; 86:13465-13474. [PMID: 34499494 DOI: 10.1021/acs.joc.1c01553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A comprehensive study of the reaction scope of methyl 1,2,3-triazine-5-carboxylate (3a) with alkyl and aryl amidines is disclosed, reacting at room temperature at remarkable rates (<5 min, 0.1 M in CH3CN) nearly 10000-fold faster than that of unsubstituted 1,2,3-triazine and providing the product pyrimidines in high yields. C4 Methyl substitution of the 1,2,3-triazine (3b) had little effect on the rate of the reaction, whereas C4/C6 dimethyl substitution (3c) slowed the room-temperature reaction (<24 h, 0.25 M) but displayed an unaltered scope, providing the product pyrimidines in similarly high yields. Measured second-order rate constants of the reaction of 3a-c, the corresponding nitriles 3e and 3f, and 1,2,3-triazine itself (3d) with benzamidine and substituted derivatives quantitated the remarkable reactivity of 3a and 3e, verified the inverse electron demand nature of the reaction (Hammett ρ = -1.50 for substituted amidines, ρ = +7.9 for 5-substituted 1,2,3-triazine), and provided a quantitative measure of the impact of 4-methyl and 4,6-dimethyl substitution on the reactivity of the methyl 1,2,3-triazine-5-carboxylate and 5-cyano-1,2,3-triazine core heterocycles.
Collapse
|
8
|
Kodama T, Sasaki I, Sugimura H. Synthesis of Pyridazine Derivatives via Aza-Diels-Alder Reactions of 1,2,3-Triazine Derivatives and 1-Propynylamines. J Org Chem 2021; 86:8926-8932. [PMID: 34132555 DOI: 10.1021/acs.joc.1c00851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective method was developed for the preparation of pyridazine derivatives via the aza-Diels-Alder reaction of 1,2,3-triazines with 1-propynylamines under neutral conditions. This methodology allowed direct access to a wide range of 6-aryl-pyridazin-3-amines in high yields with good functional group compatibility. Key features of this strategy included a broad substrate scope and simple, metal-free, and neutral reaction conditions.
Collapse
Affiliation(s)
- Takayuki Kodama
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ikuo Sasaki
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hideyuki Sugimura
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
9
|
Xu C, Yin G, Jia FC, Wu YD, Wu AX. Merging Annulation with Ring Deconstruction: Synthesis of ( E)-3-(2-Acyl-1 H-benzo[ d]imidazol-4-yl)acrylaldehyde Derivatives via I 2/FeCl 3-Promoted Dual C(sp 3)-H Amination/C-N Bond Cleavage. Org Lett 2021; 23:2559-2564. [PMID: 33739840 DOI: 10.1021/acs.orglett.1c00486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented I2/FeCl3-promoted cascade reaction of aryl methyl ketones with 8-aminoquinolines for the convenient synthesis of (E)-3-(2-acyl-1H-benzo[d]imidazol-4-yl)acrylaldehydes was developed by merging annulation with ring deconstruction. This novel strategy unlocked the new reactivity of 8-aminoquinolines and provided an attractive platform for the ring opening of unactivated N-heteroaromatic compounds. Preliminary mechanistic investigation suggested that dual C(sp3)-H amination/C-N bond cleavage were key reaction steps. Furthermore, late-stage modification of the obtained products successfully delivered pyrazole and isoxazole derivatives, increasing the practicability and application potential of this methodology in organic synthesis.
Collapse
Affiliation(s)
- Cheng Xu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China.,Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guodong Yin
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China
| | - Feng-Cheng Jia
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
10
|
Le ST, Asahara H, Nishiwaki N. Synthesis of Nitroaromatic Compounds via Three-Component Ring Transformations. Molecules 2021; 26:molecules26030639. [PMID: 33530612 PMCID: PMC7865560 DOI: 10.3390/molecules26030639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/30/2022] Open
Abstract
1-Methyl-3,5-dinitro-2-pyridone serves as an excellent substrate for nucleophilic-type ring transformation because of the electron deficiency and presence of a good leaving group. In this review, we focus on the three-component ring transformation (TCRT) of dinitropyridone involving a ketone and a nitrogen source. When dinitropyridone is allowed to react with a ketone in the presence of ammonia, TCRT proceeds to afford nitropyridines that are not easily produced by alternative procedures. Ammonium acetate can be used as a nitrogen source instead of ammonia to undergo the TCRT, leading to nitroanilines in addition to nitropyridines. In these reactions, dinitropyridone serves as a safe synthetic equivalent of unstable nitromalonaldehyde.
Collapse
Affiliation(s)
- Song Thi Le
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan; (S.T.L.); (H.A.)
- Center for Equipment and Labour Safety, Vietnam Institute for Building Materials (VIBM), Ministry of Construction, 235 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam
| | - Haruyasu Asahara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan; (S.T.L.); (H.A.)
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan; (S.T.L.); (H.A.)
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Correspondence: ; Tel.: +81-887-57-2517
| |
Collapse
|
11
|
O'Sullivan OT, Zdilla MJ. Properties and Promise of Catenated Nitrogen Systems As High-Energy-Density Materials. Chem Rev 2020; 120:5682-5744. [PMID: 32543838 DOI: 10.1021/acs.chemrev.9b00804] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The properties of catenated nitrogen molecules, molecules containing internal chains of bonded nitrogen atoms, is of fundamental scientific interest in chemical structure and bonding, as nitrogen is uniquely situated in the periodic table to form kinetically stable compounds often with chemically stable N-N bonds but which are thermodynamically unstable in that the formation of stable multiply bonded N2 is usually thermodynamically preferable. This unique placement in the periodic table makes catenated nitrogen compounds of interest for development of high-energy-density materials, including explosives for defense and construction purposes, as well as propellants for missile propulsion and for space exploration. This review, designed for a chemical audience, describes foundational subjects, methods, and metrics relevant to the energetic materials community and provides an overview of important classes of catenated nitrogen compounds ranging from theoretical investigation of hypothetical molecules to the practical application of real-world energetic materials. The review is intended to provide detailed chemical insight into the synthesis and decomposition of such materials as well as foundational knowledge of energetic science new to most chemists.
Collapse
Affiliation(s)
- Owen T O'Sullivan
- ASEE Fellow, Naval Surface Warfare Center, Indian Head Division (NSWC IHD), 4005 Indian Head Hwy, Indian Head, Maryland 20640, United States
| | - Michael J Zdilla
- Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
12
|
Ahles S, Ruhl J, Strauss MA, Wegner HA. Combining Bidentate Lewis Acid Catalysis and Photochemistry: Formal Insertion of o-Xylene into an Enamine Double Bond. Org Lett 2019; 21:3927-3930. [PMID: 31079462 DOI: 10.1021/acs.orglett.9b01020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bidentate Lewis acid catalyzed domino inverse-electron-demand Diels-Alder reaction combined with a photoinduced ring opening formally inserts o-xylene moieties into enamine double bonds. After reduction, phenethylamines were obtained in good yields. The scope of the reaction was determined by variation of all three starting compounds: phthalazines, aldehydes, and amines.
Collapse
Affiliation(s)
- Sebastian Ahles
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Julia Ruhl
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Marcel A Strauss
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany.,Center for Materials Research (LaMa) , Justus Liebig University , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| |
Collapse
|
13
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
14
|
Sugimura H, Takeuchi R, Ichikawa S, Nagayama E, Sasaki I. Synthesis of 1,2,3-Triazines Using the Base-Mediated Cyclization of ( Z)-2,4-Diazido-2-alkenoates. Org Lett 2018; 20:3434-3437. [PMID: 29790769 DOI: 10.1021/acs.orglett.8b01445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient and convenient method for the synthesis of 6-aryl-1,2,3-triazine-4-carboxylate esters has been developed using readily accessible ( Z)-4-aryl-2,4-diazido-2-alkenoates. This reaction is performed under mildly basic conditions without the assistance of any transition metals or strong acid.
Collapse
Affiliation(s)
- Hideyuki Sugimura
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Reika Takeuchi
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Shiori Ichikawa
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Eri Nagayama
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| | - Ikuo Sasaki
- Department of Chemistry and Bioscience, Faculty of Science and Technology , Aoyama Gakuin University , 5-10-1, Fuchinobe , Chuo-ku, Sagamihara 252-5258 , Japan
| |
Collapse
|