1
|
Song Y, Zou Y, Chen T, Zhang Z, Zhang W. Cobalt-Catalyzed Asymmetric Hydrogenation of α-Hydroxy Ketones Enabled by a Carboxylic Acid Additive Promotion Strategy. Angew Chem Int Ed Engl 2025:e202504159. [PMID: 40265970 DOI: 10.1002/anie.202504159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Highly enantioselective hydrogenation of α-hydroxy ketones was achieved by applying the catalytic combination of cobalt acetate and chiral Ph-BPE ligand, supplemented by a carboxylic acid additive promotion strategy. The carboxylic acid additive significantly increases both reactivity and enantioselectivity, allowing for the highly efficient generation of chiral 1,2-diols with up to 99% ee. The application utility is proved through derivations and a total synthesis of (R)-(-)-eliprodil. Mechanistic studies, including control experiments and DFT calculations, support the proposed catalytic mechanism and explain the origin of enantioselectivity.
Collapse
Affiliation(s)
- Yuxi Song
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Liu B, Liu Q, Wei G, Yang Z, He Q, Wang RH, Yang C, Zhang T, Kong X, Huang J, Liao W, Wang J, Tang L. Access to Chiral Dihydro-1,4-Benzoxazine-2-Carboxylates through NHC-Catalyzed Dynamic Kinetic Resolution. Org Lett 2025; 27:2340-2345. [PMID: 40000926 DOI: 10.1021/acs.orglett.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A chiral carbene-catalyzed dynamic kinetic resolution for the facile synthesis of enantioenriched dihydro-1,4-benzoxazine-2-carboxylates is disclosed. The reaction conditions are mild, and a diversity of substituents are well-tolerated in this transformation. In addition, our methodology also provides an efficient strategy for building chiral chromane-2-carboxylate and 2,3-dihydro-1,4-benzodioxane-2-carboxylate. The optically pure products generated from this protocol can be easily derived as the key intermediates of chiral drugs and bioactive molecules.
Collapse
Affiliation(s)
- Bin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qinqin Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Guanbin Wei
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Zaihui Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Rong-Hua Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chao Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Tianyuan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiangkai Kong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiayu Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Weike Liao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jianta Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
3
|
Liu B, Zhou X, Liu Q, Yang Z, Mao Y, He Q, Zhang T, Kong X, Zhang J, Liao W, Tang L. Carbene-Catalyzed [4+2] Cycloaddition of Cyclobutenones and Isatins for Quick Access to Chiral Chlorine-Containing Spirocyclic δ-Lactones. J Org Chem 2024; 89:7286-7294. [PMID: 38696309 DOI: 10.1021/acs.joc.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Here we report a carbene-catalyzed enantio- and diastereoselective [4+2] cycloaddition reaction of cyclobutenones with isatins for the quick and efficient synthesis of spirocyclic δ-lactones bearing a chiral chlorine. A broad range of substrates with various substitution patterns proceed smoothly in this reaction, with the spirooxindole δ-lactone products afforded in generally good to excellent yields and optical purities under mild reaction conditions.
Collapse
Affiliation(s)
- Bin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xian Zhou
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qinqin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Zaihui Yang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yuanhu Mao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qing He
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tianyuan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xiangkai Kong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Jiquan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Weike Liao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
4
|
Barik S, Das RC, Balanna K, Biju AT. Kinetic Resolution Approach to the Synthesis of C-N Axially Chiral N-Aryl Aminomaleimides via NHC-Catalyzed [3 + 3] Annulation. Org Lett 2022; 24:5456-5461. [PMID: 35856856 DOI: 10.1021/acs.orglett.2c02185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral NHC-catalyzed kinetic resolution of N-aryl aminomaleimides allowing the synthesis of C-N axially chiral N-aryl aminomaleimides via remote chirality control is presented. The catalytically generated α,β-unsaturated acylazoliums from 2-bromoenals underwent selective [3 + 3] annulation with one of the enantiomers of maleimide to furnish fused-dihydropyridinone (bearing axial/central chirality, up to 6:1 dr, >99:1 er) leaving the enantioenriched opposite enantiomer (up to >99:1 er). Studies on C-N bond rotation barrier and dependence on temperature are also provided.
Collapse
Affiliation(s)
- Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rohan Chandra Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Kuruva Balanna
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
5
|
Sakai N, Ojima K, Mori S, Oriyama T. Integrated Experimental and Computational Studies on the Organocatalytic Kinetic Resolution of β-Unfunctionalized Primary Alcohols Using a Chiral 1,2-Diamine: The Importance of Noncovalent Interactions. J Org Chem 2022; 87:4468-4475. [PMID: 35199522 DOI: 10.1021/acs.joc.1c03033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enantioselective kinetic resolution of β-unfunctionalized primary alcohols with benzoyl chloride was carried out in the presence of a catalytic amount of a novel chiral 1,2-diamine derived from (S)-proline. Several valuable chiral 2-substituted propan-1-ols were obtained with good enantioselectivities. Density functional theory calculations revealed that the noncovalent interaction, such as CH-π interaction, is crucial for the enantioselectivity of the resolution. This study was conducted through an interplay between experiment and computation.
Collapse
Affiliation(s)
- Naoki Sakai
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Kohei Ojima
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Seiji Mori
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.,Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
| | - Takeshi Oriyama
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
6
|
Porey A, Mondal BD, Guin J. Hydrogen-Bonding Assisted Catalytic Kinetic Resolution of Acyclic β-Hydroxy Amides. Angew Chem Int Ed Engl 2021; 60:8786-8791. [PMID: 33368918 DOI: 10.1002/anie.202015004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Indexed: 01/07/2023]
Abstract
Enantioenriched acyclic α-substituted β-hydroxy amides are valuable compounds in chemical, material and medicinal sciences, but their enantioselective synthesis remains challenging. A catalytic kinetic resolution (KR) of such amides with selectivity factor(s) up to >200 is developed via enantioselective acylation of primary alcohol with N-heterocyclic carbene. An enhanced selectivity for the catalytic KR process is realized using cyclic tertiary amine as base additive. Diastereomeric transition state models for the process are proposed to rationalize the origin of enantioselectivity.
Collapse
Affiliation(s)
- Arka Porey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Bhaskar Deb Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
7
|
Porey A, Mondal BD, Guin J. Hydrogen‐Bonding Assisted Catalytic Kinetic Resolution of Acyclic β‐Hydroxy Amides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arka Porey
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Bhaskar Deb Mondal
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| | - Joyram Guin
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata 700032 India
| |
Collapse
|
8
|
Gao YY, Zhang CL, Dai L, Han YF, Ye S. Dynamic Kinetic Resolution of α-Trifluoromethyl Hemiaminals without α-Hydrogen via NHC-Catalyzed O-Acylation. Org Lett 2021; 23:1361-1366. [PMID: 33533629 DOI: 10.1021/acs.orglett.1c00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following the well-recognized dynamic kinetic resolution (DKR) of hemiaminals with α-hydrogen under lipase and chiral DMAP catalysis, the unprecedented DKR of hemiaminals without α-hydrogen was developed via N-heterocyclic carbene catalyzed O-acylation of 3-hydroxy-3-trifluoromethylbenzosultams. The racemic hemiaminals without α-hydrogen were effectively racemized and differentiated by chiral NHCs under basic conditions. The resulting esters were obtained in high yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Yuan-Yuan Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Feng Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Cheng S, Ou C, Lin H, Jia J, Tang H, Pan Y, Huang G, Meng X. Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202110019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Qu S, Smith SM, Laina‐Martín V, Neyyappadath RM, Greenhalgh MD, Smith AD. Isothiourea-Catalyzed Acylative Kinetic Resolution of Tertiary α-Hydroxy Esters. Angew Chem Int Ed Engl 2020; 59:16572-16578. [PMID: 32491267 PMCID: PMC7540711 DOI: 10.1002/anie.202004354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Indexed: 01/08/2023]
Abstract
A highly enantioselective isothiourea-catalyzed acylative kinetic resolution (KR) of acyclic tertiary alcohols has been developed. Selectivity factors of up to 200 were achieved for the KR of tertiary alcohols bearing an adjacent ester substituent, with both reaction conversion and enantioselectivity found to be sensitive to the steric and electronic environment at the stereogenic tertiary carbinol centre. For more sterically congested alcohols, the use of a recently-developed isoselenourea catalyst was optimal, with equivalent enantioselectivity but higher conversion achieved in comparison to the isothiourea HyperBTM. Diastereomeric acylation transition state models are proposed to rationalize the origins of enantiodiscrimination in this process. This KR procedure was also translated to a continuous-flow process using a polymer-supported variant of the catalyst.
Collapse
Affiliation(s)
- Shen Qu
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Samuel M. Smith
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Víctor Laina‐Martín
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | - Mark D. Greenhalgh
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Andrew D. Smith
- EaStChemSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
11
|
Qu S, Smith SM, Laina‐Martín V, Neyyappadath RM, Greenhalgh MD, Smith AD. Isothiourea‐Catalyzed Acylative Kinetic Resolution of Tertiary α‐Hydroxy Esters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shen Qu
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Samuel M. Smith
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Víctor Laina‐Martín
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | | | - Mark D. Greenhalgh
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Andrew D. Smith
- EaStChemSchool of ChemistryUniversity of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
12
|
New Constituent of the Endophytic Fungus of Colletotrichum gloeosporioides. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Liu B, Song R, Xu J, Majhi PK, Yang X, Yang S, Jin Z, Chi YR. Access to Optically Enriched α-Aryloxycarboxylic Esters via Carbene-Catalyzed Dynamic Kinetic Resolution and Transesterification. Org Lett 2020; 22:3335-3338. [PMID: 32290663 DOI: 10.1021/acs.orglett.0c00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Optically active α-aryloxycarboxylic acids and their derivatives are important functional molecules. Disclosed here is a carbene-catalyzed dynamic kinetic resolution and transesterification reaction for access to this class of molecules with up to 99% yields and 99:1 er values. Addition of a chiral carbene catalyst to the ester substrate leads to two diastereomeric azolium ester intermediates that can quickly epimerize to each other and thus allows for effective dynamic kinetic resolution to be realized. The optically enriched ester products from our reaction can be quickly transformed to chiral herbicides and other bioactive molecules.
Collapse
Affiliation(s)
- Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Runjiang Song
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Pankaj Kumar Majhi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Song Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
14
|
Huang B, He Y, Levin MD, Coelho JAS, Bergman RG, Toste FD. Enantioselective Kinetic Resolution/Desymmetrization of Para-Quinols: A Case Study in Boronic-Acid-Directed Phosphoric Acid Catalysis. Adv Synth Catal 2020; 362:295-301. [PMID: 34093103 DOI: 10.1002/adsc.201900816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A chiral phosphoric acid-catalyzed kinetic resolution and desymmetrization of para-quinols operating via oxa-Michael addition was developed and subsequently subjected to mechanistic study. Good to excellent s-factors/enantioselectivities were obtained over a broad range of substrates. Kinetic studies were performed, and DFT studies favor a hydrogen bonding activation mode. The mechanistic studies provide insights to previously reported chiral anion phase transfer reactions involving chiral phosphate catalysts in combination with boronic acids.
Collapse
Affiliation(s)
- Banruo Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - Ying He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - Mark D Levin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - Jaime A S Coelho
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA).,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)
| |
Collapse
|
15
|
Meng J, Ding WW, Han ZY. Synthesis of Chiral Esters via Asymmetric Wolff Rearrangement Reaction. Org Lett 2019; 21:9801-9805. [DOI: 10.1021/acs.orglett.9b03227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Meng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Wei Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
He X, Li Y, Fu H, Zheng X, Chen H, Li R, Yu X. Synthesis of Unsymmetrical N-Heterocyclic Carbene–Nitrogen–Phosphine Chelated Ruthenium(II) Complexes and Their Reactivity in Acceptorless Dehydrogenative Coupling of Alcohols to Esters. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaochun He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yaqiu Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hua Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaojun Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
17
|
Lang M, Wang J. A carbene-catalyzed tandem isomerization/cyclisation strategy: an efficient assembly of benzoxazinones. Org Chem Front 2019. [DOI: 10.1039/c9qo00094a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unprecedented example of NHC-catalyzed tandem isomerization/cyclisation is reported to synthesize benzoxazinones.
Collapse
Affiliation(s)
- Ming Lang
- School of Pharmaceutical Sciences
- Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing
- China
| | - Jian Wang
- School of Pharmaceutical Sciences
- Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing
- China
| |
Collapse
|
18
|
Bhattacharya A, mani Shukla P, Kumar Kaushik L, Maji B. Synthesis of chromans and kinetic resolution of 2-aryl-3-nitro-2H-chromenes via the NHC-bound azolium homoenolate pathway. Org Chem Front 2019. [DOI: 10.1039/c9qo00868c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, an effective kinetic resolution (KR) of racemate 2-aryl-3-nitro-2H-chromenes to afford synthetically valuable chromans and 2H-chromenes through an NHC-bound acyl azolium homoenolate pathway has been demonstrated.
Collapse
Affiliation(s)
- Aditya Bhattacharya
- Department of Chemistry
- Indira Gandhi National Tribal University
- Amarkantak-484886
- India
| | | | - Lalit Kumar Kaushik
- Department of Chemistry
- Indira Gandhi National Tribal University
- Amarkantak-484886
- India
| | - Biswajit Maji
- Department of Chemistry
- Indira Gandhi National Tribal University
- Amarkantak-484886
- India
| |
Collapse
|
19
|
Abstract
N-heterocyclic carbene organocatalysis under oxidizing conditions provides a vast range of various synthetic procedures via diverse mechanisms. The available catalysts, bases, oxidants, and oxidizing methods afford numerous opportunities for developing this branch of organocatalysis. Furthermore, implementation of tandem reactions and cooperative catalysis in the described methodology significantly expands the possibilities of modern organic chemistry. This approach allows the synthesis of different structurally complex and often enantiomerically enriched substances, which can be interesting in terms of biological activity and natural product synthesis. Many esters, amides, thioesters, lactams, lactones, and other cyclic compounds obtained in oxidative or oxygenative reactions promoted by N-heterocyclic carbenes can be interesting precursors in advanced organic synthesis. Sophistication and broad applicability prove that the described synthetic approaches are exceptionally worthy of further development.
Collapse
|