1
|
Song L, Li FQ, Qiu XH, Wei GZ, Chen HY, Bian M, Gao YN, Liu ZJ. Copper-catalyzed tandem cyclization reaction of ethynylbenzoxazinones and thiols: facile construction of 2-thiomethylene indoles. Org Biomol Chem 2024; 22:8268-8272. [PMID: 39311707 DOI: 10.1039/d4ob01164c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The first successful copper-catalyzed decarboxylative cyclization reaction of ethynylbenzoxazinones and thiols has been developed. A rarely studied α-addition process to a copper-allenylidene intermediate promoted this reaction. Using this protocol, a range of 2-thiomethylene indole compounds have been obtained. This methodology offers significant advantages including mild reaction conditions, cheap catalysts, good yields and broad substrate compatibility.
Collapse
Affiliation(s)
- Lei Song
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Fu-Qiang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Xiao-Han Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Guo-Zhen Wei
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Hui-Yu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Ming Bian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Yu-Ning Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Ghosh S, Mukherjee S. Doubly Stereoconvergent Propargylic Alkylation of α-Cyanocarbonyls: Enantioselective Construction of Vicinal Stereocenters. Org Lett 2024; 26:7733-7738. [PMID: 39213501 DOI: 10.1021/acs.orglett.4c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An asymmetric propargylic alkylation of α-cyanocarbonyls is developed for the first time under cooperative Cu(I) and organocatalysis. With ethynyl benzoxazinanones as the propargylic electrophile, this decarboxylative doubly stereoconvergent reaction evades alkyne hydroamination to furnish acyclic α-propargylic cyanocarbonyls, bearing vicinal tertiary and quaternary stereocenters, with high diastereo- and enantioselectivity (up to >20:1 dr and 99.5:0.5 er).
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Cheng Z, Chen J, Zhang Y, Shao Y, Sun J, Tang S. Decarboxylative Cyclization of Ethynyl Benzoxazinanones with Imidazolidines to Access 2,3-Indole-Fused 1,4-Diazocines. Org Lett 2024; 26:4863-4867. [PMID: 38833707 DOI: 10.1021/acs.orglett.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
2,3-Indole-fused 1,4-diazocines represent a new family of indole alkaloid compounds and are difficult to access by the reported protocols. Herein, we report a copper-catalyzed decarboxylative cyclization of cyclic propargylic carbamates with imidazolidines via sequential C-N/C-N/C-C bond formation to deliver a series of 2,3-indole-fused 1,4-diazocines, with a broad substrate scope and mild conditions.
Collapse
Affiliation(s)
- Zhangru Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiadong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yulu Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Ghosh S, Mukherjee S. Ligand-Controlled Diastereodivergency in Propargylic Alkylation of Vinylogous Aza-Enamines: Construction of 1,3-Stereocenters. Org Lett 2023; 25:7304-7309. [PMID: 37782956 DOI: 10.1021/acs.orglett.3c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The first diastereodivergent propargylic alkylation reaction is developed. This Cu(I)-catalyzed formal decarboxylative [4+2] cycloaddition between ethynyl benzoxazinanone and vinylogous aza-enamine delivers each diastereomer of tetrahydroquinoline derivatives, bearing 1,3-stereocenters, using either i-Pr-Pybox or BINAP as the ligand under otherwise identical reaction conditions. This is the first application of vinylogous aza-enamines in a transition metal-catalyzed transformation and the first example of the creation of 1,3-stereocenters in a propargylic substitution reaction.
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Ji D, Li X. Rh(III)-Catalyzed C-H Activation of Benzamides and Chemodivergent Annulation with Benzoxazinanones: Substrate Controlled Selectivity. Org Lett 2023; 25:7083-7088. [PMID: 37747919 DOI: 10.1021/acs.orglett.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Decarboxylative annulation of propargyl carbamates with benzamides has been realized via rhodium-catalyzed C-H bond activation under mild conditions, delivering two distinct classes of heterocycles in high efficiency and selectivity under substrate control. This protocol provides a direct synthetic method for the preparation of functionalized 1,8-naphthyridines and isoindolinones.
Collapse
Affiliation(s)
- Danqing Ji
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
6
|
Bondarev VL, Festa AA, Storozhenko OA, Golantsov NE, Pappula V, Tskhovrebov AG, Varlamov AV, Voskressensky LG. Azo Coupling of Indoles Revisited: Synthesis of Biindolyl Photoswitches via the Azo-Coupling/C-H Functionalization Domino Approach. J Org Chem 2023; 88:12949-12957. [PMID: 37624664 DOI: 10.1021/acs.joc.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
When azo coupling of aryldiazonium salts with indoles was carried out in aprotic nonpolar solvent on air, a pseudo-three-component reaction has been discovered. Azo coupling is followed by a nucleophilic addition of a second indole unit to the indolium intermediate; aromatization and oxidation are achieved under air.
Collapse
Affiliation(s)
- Vladimir L Bondarev
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Nikita E Golantsov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Venkatanarayana Pappula
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexander G Tskhovrebov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Chen D, Li J, Liu G, Zhang X, Wang X, Liu Y, Liu X, Liu X, Li Y, Shan Y. Accessing indole-isoindole derivatives via palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. Chem Commun (Camb) 2023; 59:10540-10543. [PMID: 37566103 DOI: 10.1039/d3cc02654j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A facile protocol for the preparation of indole-isoindole derivatives was developed and proceeds via a palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. In this transformation, the palladium catalyst has a triple role, serving simultaneously as a π acid, a transition-metal catalyst and a hydride ion donor, thus enabling the dual function of isocyanide both as a C1 synthon for cyanation and a C1N1 synthon for imidoylation. Significantly, the reaction is the sole successful example for accessing indole-isoindole derivatives, and will open up new avenues to assemble unique N-heterocycle frameworks. Furthermore, the synthetic value of this protocol is demonstrated in the late-stage modification of physiologically active molecules and in the construction of aggregation-induced emission compounds.
Collapse
Affiliation(s)
- Dianpeng Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xinghai Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongqin Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
8
|
You Y, Li TT, Sun TJ, Zhang YP, Wang ZH, Zhao JQ, Yuan WC. Enantioselective Construction of Vicinal Quaternary-Tetrasubstituted Carbon Stereocenters by Copper-Catalyzed Decarboxylative Propargylic Substitution. Org Lett 2022; 24:7671-7676. [PMID: 36226893 DOI: 10.1021/acs.orglett.2c03244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective construction of vicinal tetrasubstituted carbon stereocenters is a formidable challenge in organic synthesis. A copper-catalyzed asymmetric decarboxylative propargylic substitution with 3-amino oxindoles as trisubstituted carbon nucleophiles and propargylic cyclic carbonates as tertiary carbon electrophiles was developed. A range of 3-amino-3,3'-disubstituted oxindoles bearing vicinal quaternary-tetrasubstituted carbon stereocenters were obtained in high yields and good to excellent stereoselectivities (up to 98% yield, >20:1 dr, and 98.5:1.5 er).
Collapse
Affiliation(s)
- Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ting-Jia Sun
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Li TT, You Y, Sun TJ, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Copper-Catalyzed Decarboxylative Cascade Cyclization of Propargylic Cyclic Carbonates/Carbamates with Pyridinium 1,4-Zwitterionic Thiolates to Fused Polyheterocyclic Structures. Org Lett 2022; 24:5120-5125. [PMID: 35819406 DOI: 10.1021/acs.orglett.2c01959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed decarboxylative cascade cyclization of propargylic cyclic carbonates/carbamates with pyridinium 1,4-zwitterionic thiolates is developed. A range of fused polyheterocyclic compounds are obtained in moderate to good yields with excellent diastereoselectivities. Of particular note is that four new bonds (two C-C, one C-O/N, one C-S) and four new stereocenters could be efficiently embedded into the tetracyclic fused scaffolds in a single step.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Jia Sun
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Zhao Y, Li S, Fan Y, Wang H, Kang X, Ji Z, Tian L. Synthesis of Polycyclic 3,3′-Biindoles via AgOTf-Catalyzed Nucleophilic Addition and Cycloisomerization. J Org Chem 2022; 87:6418-6425. [DOI: 10.1021/acs.joc.2c00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Huimin Wang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xin Kang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhongyin Ji
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Laijin Tian
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
11
|
Liu X, Tian X, Huang J, Qian Y, Xu X, Kang Z, Hu W. Enantioselective Propargylation of Oxonium Ylide with α-Propargylic-3-Indolymethanol: Access to Chiral Propargylic Indoles. Org Lett 2022; 24:1027-1032. [PMID: 35060734 DOI: 10.1021/acs.orglett.1c04217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An enantioselective three-component reaction of α-propargylic-3-indolymethanol with diazoindolinone and alcohol under cocatalysis of Rh(II) and chiral phosphoric acid (CPA) has been reported. It proceeds through the regio- and enantiospecific addition of the in situ formed oxonium ylide to the α-propargylic indole iminium ion that is generated from 3-indolyl propargylic alcohol with CPA. This work features an asymmetric counteranion-directed propargylation of oxonium ylide, and provides an efficient access to chiral propargylic indole derivatives with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Xiangrong Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Tian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiawu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenghui Kang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Kalyani A, Tulichala RP, Chauhan S, Swamy KK. Palladium catalyzed nitrile insertion and cyanation of biindoles: Synthesis of indole fused α-carboline scaffolds via double C–H activation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Chen G, Xu B. Mild Base-Promoted Tandem Nucleophilic Substitution/Decarboxylation/Hydroamination: Access to 3-Sulfonylindoles and 2-Methyleneindophenols. Org Lett 2021; 23:9157-9162. [PMID: 34766781 DOI: 10.1021/acs.orglett.1c03472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed an efficient construction of 3-sulfonylindoles and 2-methyleneindophenols via decarboxylative propargylation/hydroamination of ethynyl benzoxazinanones using sodium sulfonates and phenols as the nucleophiles. The reaction featured mild conditions (K2CO3), simple operation, and high chemoselectivity and was transition-metal-free. Our protocol could also be extended to other nucleophiles, including malonates, alcohols, and indoles. The broad substrate scope and scalability made this protocol practical for the synthesis of indole derivatives.
Collapse
Affiliation(s)
- Guifang Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Shen J, Tian F, Yang W, Deng W. Synergistic Copper and Chiral Lewis Base Catalysis for the Asymmetric Synthesis of Pyrrolo[1,2‐
a
]indoles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jia‐Huan Shen
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Fei Tian
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Wu‐Lin Yang
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| | - Wei‐Ping Deng
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy East China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
15
|
Construction of poly-N-heterocyclic scaffolds via the controlled reactivity of Cu-allenylidene intermediates. Commun Chem 2021; 4:158. [PMID: 36697740 PMCID: PMC9814594 DOI: 10.1038/s42004-021-00596-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Controlling the sequence of the three consecutive reactive carbon centres of Cu-allenylidene remains a challenge. One of the impressive achievements in this area is the Cu-catalyzed annulation of 4-ethynyl benzoxazinanones, which are transformed into zwitterionic Cu-stabilized allenylidenes that are trapped by interceptors to provide the annulation products. In principle, the reaction proceeds via a preferential γ-attack, while annulation reactions via an α- or β-attack are infrequent. Herein, we describe a method for controlling the annulation mode, by the manipulation of a CF3 or CH3 substituent, to make it proceed via either a γ-attack or an α- or β-attack. The annulation of CF3-substituted substrates with sulfamate-imines furnished densely functionalized N-heterocycles with excellent enantioselectivity via a cascade of an internal β-attack and an external α-attack. CH3-variants were transformed into different heterocycles that possess a spiral skeleton, via a cascade of an internal β-attack and a hydride α-migration followed by a Diels-Alder reaction.
Collapse
|
16
|
Simlandy AK, Brown MK. Allenylidene Induced 1,2‐Metalate Rearrangement of Indole‐Boronates: Diastereoselective Access to Highly Substituted Indolines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
17
|
Simlandy AK, Brown MK. Allenylidene Induced 1,2-Metalate Rearrangement of Indole-Boronates: Diastereoselective Access to Highly Substituted Indolines. Angew Chem Int Ed Engl 2021; 60:12366-12370. [PMID: 33734546 DOI: 10.1002/anie.202103108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
A process to achieve 1,2-metalate rearrangements of indole boronate as a way to access substituted indolines in high diastereoselectivities is presented. The reaction involves the generation of a Cu-allenylidene, which is sufficiently electrophilic to induce the 1,2-metalate rearrangement. The scope of the reaction is evaluated as well as further transformations of the product.
Collapse
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| |
Collapse
|
18
|
Wang L, Jiang F, Gao X, Wang W, Wu Y, Guo H, Zheng B. Base‐Mediated Decarboxylative [3+2] Annulation of Ethynyl Benzoxazinanones and Benzimidamides: Synthesis of Imidazole Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lan Wang
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Feng Jiang
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Xing Gao
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| |
Collapse
|
19
|
Wang S, Song M, Li X, Huang Y, Zhao T, Wei Z, Lan Y, Tan H. Synthesis of Heterobiaryl 4-Aryl Furans through a Base-Promoted Decarboxylative Propargylation/Cycloisomerization Annulation. Org Lett 2020; 22:8752-8757. [PMID: 33021800 DOI: 10.1021/acs.orglett.0c02668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A transition-metal-free synthesis of heterobiaryl 4-aryl furans through a base-promoted decarboxylative propargylation/cycloisomerization annulation of ethynyl benzoxazinanones and readily accessible β-keto esters or 1,3-diketones has been developed. A series of novel heterobiaryl 4-aryl furans were accessed efficiently in the presence of base under mild reaction conditions. This protocol is significant for probing the reaction mechanism of ethynyl benzoxazinanones and even other propargylic compounds.
Collapse
Affiliation(s)
- Sasa Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.,Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Meimei Song
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Xiuguang Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Yunhong Huang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Tingxiang Zhao
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Zhuoji Wei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Yanyun Lan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
20
|
Zhong D, Jiang F, Shen S, Wang L, Wang W, Wu Y, Xiao Y, Guo H. Formal [3+2] Annulation of Copper‐Allenylidenes with 3‐Oxo‐3‐Arylpropanenitriles: Synthesis of Tetrasubstituted Furans. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- De Zhong
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Feng Jiang
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Siyong Shen
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Lan Wang
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| |
Collapse
|
21
|
Tang X, Zhang N, He G, Li CH, Huang W, Wang XY, Zhan G, Han B. Unconventional [2 + 3] Cyclization Involving [1,4]-Sulfonyl Transfer to Construct Polysubstituted Fluorazones as Inhibitors of Indoleamine 2,3-Dioxygenase 1. Org Lett 2020; 22:7909-7914. [PMID: 32991179 DOI: 10.1021/acs.orglett.0c02836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Cheng-Hao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Xiao-Yun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| |
Collapse
|
22
|
Li T, Liu S, Tan W, Shi F. Catalytic Asymmetric Construction of Axially Chiral Indole‐Based Frameworks: An Emerging Area. Chemistry 2020; 26:15779-15792. [DOI: 10.1002/chem.202001397] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Tian‐Zhen Li
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Si‐Jia Liu
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Wei Tan
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Feng Shi
- School of Chemistry and Materials Science Jiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
23
|
Shao W, Xu‐Xu Q, You S. Highly Diastereoselective Synthesis of Polycyclic Indolines through Formal [4+2] Propargylic Cycloaddition of Indoles with Ethynyl Benzoxazinanones. Chem Asian J 2020; 15:2462-2466. [DOI: 10.1002/asia.202000640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Wen Shao
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing‐Feng Xu‐Xu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
24
|
Yan L, Han L, Xie R. Ferrocenyl induced one-pot synthesis of 3,3′-ferrocenylbiindoles. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1770235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ligang Yan
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, P. R. China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, P. R. China
| | - Ruijun Xie
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, P. R. China
| |
Collapse
|
25
|
Shiri P. An overview on the copper‐promoted synthesis of five‐membered heterocyclic systems. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pezhman Shiri
- Department of ChemistryShiraz University Shiraz Iran
| |
Collapse
|
26
|
Gannarapu MR, Zhou J, Jiang B, Shibata N. Two Catalytic Annulation Modes via Cu-Allenylidenes with Sulfur Ylides that Are Dominated by the Presence or Absence of Trifluoromethyl Substituents. iScience 2020; 23:100994. [PMID: 32259670 PMCID: PMC7132161 DOI: 10.1016/j.isci.2020.100994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
We disclose the Cu-catalyzed enantioselective synthesis of 3-methyl-3-propargyl-indolines, which contain a quaternary stereogenic carbon center, via the decarboxylative [4 + 1] annulation of 4-methyl-4-propargyl-benzoxazinanones with variety of sulfur ylides. The reaction proceeds predominantly through a γ-attack at the Cu-allenylidene intermediates by sulfur ylides to provide the corresponding indolines in good yield and high enantioselectivity (up to 91% ee). In contrast, the reaction of 4-trifluoromethyl-4-propargyl-benzoxazinanones with sulfur ylides delivers 3-trifluoromethyl-2-functionalized indoles in good to high yield via an unexpected α-attack at the Cu-allenylidene intermediates. Control over the α/γ-attack at the Cu-allenylidene intermediates by the same interceptors was achieved for the first time by the use of trifluoromethyl substituents.
Collapse
Affiliation(s)
- Malla Reddy Gannarapu
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Jun Zhou
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Bingyao Jiang
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Departments of Nanopharmaceutical Science & Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan; Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.
| |
Collapse
|
27
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Zuo L, Liu T, Chang X, Guo W. An Update of Transition Metal-Catalyzed Decarboxylative Transformations of Cyclic Carbonates and Carbamates. Molecules 2019; 24:E3930. [PMID: 31683557 PMCID: PMC6864628 DOI: 10.3390/molecules24213930] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/06/2023] Open
Abstract
Functionalized cyclic organic carbonates and carbamates are frequently used in a number of transition metal-catalyzed decarboxylative reactions for the construction of interesting molecules. These decarboxylative transformations have attracted more and more research attention in recent years mainly due to their advantages of less waste generation and versatile reactivities. On the basis of previous reviews on this hot topic, the present review will focus on the development of transition metal-catalyzed decarboxylative transformations of functionalized cyclic carbonates and carbamates in the last two years.
Collapse
Affiliation(s)
- Linhong Zuo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| | - Teng Liu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| | - Xiaowei Chang
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| |
Collapse
|
29
|
Zou Y, Liu X, Zhang J, Yang H, Yang X, Liu X, Chu Y, Chen L. Synthesis of C2‐Phosphorylated Indoles
via
Metal‐Free 1,2‐Phosphorylation of 3‐Indolylmethanols with P(O)‐H Species. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yun‐Xiang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Jing Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Hong‐Li Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xin‐Yue Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Xiao‐Ling Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yi‐Wen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| |
Collapse
|
30
|
Xu YW, Hu XP. Diastereo- and Enantioselective Copper-Catalyzed Decarboxylative Ring-Opening [3 + 2] Annulation of Tertiary Propargylic Carbamates through Regioselective α-Attack of γ-Butenolides. Org Lett 2019; 21:8091-8096. [DOI: 10.1021/acs.orglett.9b03081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- You-Wei Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Ma C, Jiang F, Sheng F, Jiao Y, Mei G, Shi F. Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′‐Bisindole Skeletons. Angew Chem Int Ed Engl 2019; 58:3014-3020. [DOI: 10.1002/anie.201811177] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Chun Ma
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Fei Jiang
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Feng‐Tao Sheng
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Yinchun Jiao
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Guang‐Jian Mei
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Feng Shi
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
32
|
Punna N, Harada K, Zhou J, Shibata N. Pd-Catalyzed Decarboxylative Cyclization of Trifluoromethyl Vinyl Benzoxazinanones with Sulfur Ylides: Access to Trifluoromethyl Dihydroquinolines. Org Lett 2019; 21:1515-1520. [DOI: 10.1021/acs.orglett.9b00330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kyosuke Harada
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
33
|
Yuan WK, Sun SZ, Zhang LB, Wen LR, Li M. A concise construction of 4-alkynylquinazolines via [4 + 2] annulation of 4-alkynylbenzoxazinanones with acylhydroxamates under transition-metal-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00668k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A concise and highly efficient method for the construction of valuable 4-alkynylquinazolines under transition-metal-free conditions was developed via [4 + 2] annulation of 4-alkynylbenzoxazinanones with acylhydroxamates in good to excellent yields.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Sheng-Zheng Sun
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
34
|
Peng C, Kusakabe T, Kikkawa S, Mochida T, Azumaya I, Dhage YD, Takahashi K, Sasai H, Kato K. Asymmetric Cyclizative Dimerization of (
ortho
‐Alkynyl Phenyl) (Methoxymethyl) Sulfides with Palladium(II) Bisoxazoline Catalyst. Chemistry 2018; 25:733-737. [DOI: 10.1002/chem.201804779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Cheng Peng
- Faculty of Pharmaceutical SciencesToho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Taichi Kusakabe
- Faculty of Pharmaceutical SciencesToho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical SciencesToho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Tomoyuki Mochida
- Department of ChemistryFaculty of SciencesKobe University Rokkodai, Nada Kobe 657-8501 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical SciencesToho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Yogesh Daulat Dhage
- Faculty of Pharmaceutical SciencesToho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical SciencesToho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR)Osaka University Mihogaoka Ibaraki-shi, Osaka 567-0047 Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical SciencesToho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| |
Collapse
|
35
|
Ma C, Jiang F, Sheng F, Jiao Y, Mei G, Shi F. Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′‐Bisindole Skeletons. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811177] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chun Ma
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Fei Jiang
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Feng‐Tao Sheng
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Yinchun Jiao
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Guang‐Jian Mei
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| | - Feng Shi
- School of Chemistry and Materials ScienceJiangsu Normal University Xuzhou 221116 P. R. China
| |
Collapse
|
36
|
Jiang F, Feng X, Wang R, Gao X, Jia H, Xiao Y, Zhang C, Guo H. Asymmetric [3 + 3] Annulation of Copper–Allenylidenes with Pyrazolones: Synthesis of Chiral 1,4-Dihydropyrano[2,3-c]pyrazoles. Org Lett 2018; 20:5278-5281. [DOI: 10.1021/acs.orglett.8b02214] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Feng Jiang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Xinping Feng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Rou Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Xing Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hao Jia
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Cheng Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
37
|
Wang S, Liu M, Chen X, Wang H, Zhai H. Copper-catalyzed decarboxylative propargylation/hydroamination reactions: access to C3 β-ketoester-functionalized indoles. Chem Commun (Camb) 2018; 54:8375-8378. [DOI: 10.1039/c8cc04499f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed reaction of ethynyl benzoxazinanones with readily accessible β-ketoesters via a decarboxylative propargylation/hydroamination sequence has been developed. This protocol furnished a diverse range of C3 β-ketoester-functionalized indoles in good to excellent yields.
Collapse
Affiliation(s)
- Sasa Wang
- The State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Miao Liu
- The State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Xinzheng Chen
- The State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Huifei Wang
- The State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics
- Key Laboratory of Chemical Genomics
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| |
Collapse
|
38
|
Li L, Liu ZT, Hu XP. Copper-catalyzed propargylic [3+3] cycloaddition with 1H-pyrazol-5(4H)-ones: enantioselective access to optically active dihydropyrano[2,3-c]pyrazoles. Chem Commun (Camb) 2018; 54:12033-12036. [DOI: 10.1039/c8cc05706k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A copper-catalyzed propargylic [3+3] cycloaddition with 1H-pyrazol-5(4H)-ones as C,O-bisnucleophiles through the desilylation-activated strategy has been developed. With the support of a chiral tridentate P,N,N-ligand, the reaction gave rise to a variety of optically active dihydropyrano[2,3-c]pyrazoles cyclohexadienone derivatives with up to 96% ee.
Collapse
Affiliation(s)
- Ling Li
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Zhen-Ting Liu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
39
|
Gao Q, Wang Y, Wang Q, Zhu Y, Liu Z, Zhang J. I2-Triggered N–O cleavage of ketoxime acetates for the synthesis of 3-(4-pyridyl)indoles. Org Biomol Chem 2018; 16:9030-9037. [DOI: 10.1039/c8ob02230e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An I2-triggered condensation annulation of aryl ketoxime acetates and 3-formylindoles to produce diverse 3-(4-pyridyl)indoles via generating iminyl radicals.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy
- Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Yakun Wang
- School of Pharmacy
- Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Qianqian Wang
- School of International education
- Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Yanping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Zhaomin Liu
- School of Pharmacy
- Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Jixia Zhang
- School of Pharmacy
- Xinxiang Medical University
- Xinxiang
- P. R. China
| |
Collapse
|