1
|
Li YH, Hu XP. Copper-Catalyzed Enantioselective (3 + 3) Cycloaddition of Ethynyl Methylene Cyclic Carbamates with N, N'-Cyclic Azomethine Imines. Org Lett 2025; 27:4372-4377. [PMID: 40238994 DOI: 10.1021/acs.orglett.5c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A copper-catalyzed asymmetric cross 1,3-dipolar cycloaddition between 2-aminoallyl zwitterions generated in situ from ethynyl methylene cyclic carbamates and N,N'-cyclic azomethine imines has been realized. The reaction, which utilizes a commercially available chiral tridentate N-ligand, delivers a range of functionally rich chiral hexahydro-8H-pyrazolo[1,2-a][1,2,4]triazin-8-one derivatives in 51-99% yields with good to high enantioselectivities (44-95% ee).
Collapse
Affiliation(s)
- Ya-Hui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
Zhang L, Meggers E. Chiral-at-metal catalysts: history, terminology, design, synthesis, and applications. Chem Soc Rev 2025; 54:1986-2005. [PMID: 39836047 PMCID: PMC11749197 DOI: 10.1039/d4cs01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 01/22/2025]
Abstract
For decades, advances in chiral transition metal catalysis have been closely tied to the development of customized chiral ligands. Recently, however, an alternative approach to this traditional metal-plus-chiral-ligand method has emerged. In this new strategy, chiral transition metal catalysts are composed entirely of achiral ligands, with the overall chirality originating exclusively from a stereogenic metal center. This "chiral-at-metal" approach offers the benefit of structural simplicity. More importantly, by removing the need for chiral elements within the ligand framework, it opens up new possibilities for designing innovative catalyst architectures with unique properties. As a result, chiral-at-metal catalysis is becoming an increasingly important area of research. This review offers a comprehensive overview and detailed insights into asymmetric chiral-at-metal catalysis, encouraging scientists to explore new avenues in asymmetric transition metal catalysis and driving innovation in both fundamental and applied research.
Collapse
Affiliation(s)
- Lilu Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany.
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany.
| |
Collapse
|
3
|
Grau BW, Kumar P, Nilsen A, Malhotra SV. Nitrogen-bridgehead compounds: overview, synthesis, and outlook on applications. Org Biomol Chem 2025; 23:1479-1532. [PMID: 39623962 DOI: 10.1039/d4ob01589d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The nitrogen-bridgehead is a common structural motif present in a multitude of natural products. As many of these abundant compounds exhibit biological activities, e.g. against cancer or bacteria, these derivatives are of high interest. While natural products are often associated with problematic characteristics, such as elaborate separation processes, high molecular complexity and limited room for derivatization, purely synthetic approaches can overcome these challenges. Many synthetic procedures have been reported for preparation of artificial nitrogen bridgehead compounds, however, to our surprise only a fraction of these has been tested for their bioactivity. This review is therefore meant to give an overview of existing synthetic methods that provide scaffolds containing bridgehead nitrogen atoms, covering the period from 2000 to 2023. Reviews which cover subunits of this topic are referenced as well.
Collapse
Affiliation(s)
- Benedikt W Grau
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Nilsen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
4
|
Cao X, Tian X, Liu M, Li SW. Asymmetric Synthesis of Optically Active Pyrazolidines or Pyrazoline Derivatives via Ni(II)-Bipyridine- N, N'-dioxide Complexes. Org Lett 2025; 27:19-24. [PMID: 39720879 DOI: 10.1021/acs.orglett.4c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Easily obtainable and efficient chiral C2-symmetric bipyridine-N,N'-dioxide ligands with Ni(OTf)2 were developed for application in catalyzing [3 + 2] cycloaddition reactions to synthesize optically active fused pyrazolidines or pyrazoline derivatives featuring three contiguous stereogenic centers by employing azomethine imines and α,β-unsaturated 2-acyl imidazoles, affording the corresponding adducts with the opposite configuration compared to previous synthetic products in 80-98% yields with 28-99% ee and >20:1 dr. In addition, subsequent amplification experiments and derivative transformations of the product further demonstrated the efficient catalytic performance of the catalyst Ni(II)-bipyridine-N,N'-dioxide complexes and the practicality of this synthesis methodology.
Collapse
Affiliation(s)
- Xiaoying Cao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xue Tian
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Minmin Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
5
|
Liu RH, Chai GL, Wang X, Deng HY, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of β-Trifluoromethyl α,β-Unsaturated Ketones with N,N'-Cyclic Azomethine Imines. J Org Chem 2023; 88:16566-16580. [PMID: 37967281 DOI: 10.1021/acs.joc.3c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of β-trifluoromethyl α,β-unsaturated ketone with N,N'-cyclic azomethine imines was developed to afford N,N'-bicyclic pyrazolidine derivatives bearing a stereogenic carbon center containing CF3 motifs in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr, and >99% ee). This catalytic system features mild reaction conditions, high efficiency, and a broad substrate scope.
Collapse
Affiliation(s)
- Rui-Hao Liu
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Yu Deng
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Zheng J, Yang L, Dai X, Chen L, Tang L, Zhou Y, Li WDZ. Diastereodivergent Synthesis of Pentacyclic Spiroindolines via a Magnesium(II)-Catalyzed Cascade Reaction of N,N'-Cyclic Azomethine Imines with Indolyl-Substituted Isocyanides. Org Lett 2023. [PMID: 37196242 DOI: 10.1021/acs.orglett.3c01085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnesium(II)-catalyzed cascade reactions of N,N'-cyclic azomethine imines with indolyl-substituted isocyanides are reported herein. The method exhibited a high functional group tolerance and broad substrate scope. A series of anti-pentacyclic spiroindolines containing N,N'-fused heterocycle skeletons were obtained in up to 82% yield with 8.5:1 dr under mild reaction conditions. Intriguingly, a sequential HOAc-mediated protonation results in a diastereoenriched epimerization, which gives rise to the syn-pentacyclic spiroindolines as the sole isomers.
Collapse
Affiliation(s)
- Jianfeng Zheng
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Lin Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Dai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lvli Chen
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Luhao Tang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry &Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wei-Dong Z Li
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
7
|
Kang SH, No J, Kim SG. Catalyst-free 1,3-dipolar [3 + 2] cycloadditions of N,N′-cyclic azomethine imines with β-substituted-α,β-unsaturated carbonyls: Access to highly regioselective functionalized N,N′-bicyclic pyrazolidinones. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Chai GL, Yao EZ, Liu RH, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of 2'-Hydroxychalcones with N, N'-Cyclic Azomethine Imines. Org Lett 2022; 24:6449-6454. [PMID: 36040361 DOI: 10.1021/acs.orglett.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the (R)-3,3'-I2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of 2'-hydroxychalcones with N,N'-cyclic azomethine imines, providing the corresponding N,N'-bicyclic pyrazolidine derivatives with three contiguous tertiary stereocenters in high yields with excellent diastereo- and enantioselectivities (up to >99:1 diastereomeric ratio and >99% enantiomeric excess). This catalytic system exhibits advantages of mild reaction conditions, high efficiency, and broad substrate scopes.
Collapse
Affiliation(s)
- Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - En-Ze Yao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Rui-Hao Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
9
|
Zhou Y, Zhou H, Xu J. N-Heterocyclic Carbene-Catalyzed Stereoselective [3 + 2] Cycloaddition of N, N'-Cyclic Azomethine Imines with Aryl Acetaldehydes. J Org Chem 2022; 87:10476-10484. [PMID: 35861147 DOI: 10.1021/acs.joc.2c01064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly stereoselective [3 + 2] cycloaddition reaction of N,N'-cyclic azomethine imines with aryl acetaldehydes enabled by a chiral N-heterocyclic carbene catalyst is accomplished, giving efficient access to a plethora of enantioenriched N,N'-bicyclic pyrazolidinones featuring aromatic substituents at the C2 position. The current strategy can be directly conducted on a gram scale, and the product could be further reduced to bicyclic pyrazolidine without loss of enantiopurity.
Collapse
Affiliation(s)
- Yipeng Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| |
Collapse
|
10
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
11
|
Ming S, Yang J, Wu S, Yao G, Xiong H, Du Y, Gong J. Catalytic asymmetric cyclopropanation of sulfoxonium ylides catalyzed by a chiral-at-metal rhodium complex. Org Chem Front 2022. [DOI: 10.1039/d2qo01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient asymmetric cyclopropanation of sulfoxonium ylides with α,β-unsaturated 2-acyl imidazoles catalyzed by a chiral-at-metal rhodium complex has been developed.
Collapse
Affiliation(s)
- Siliang Ming
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Jian Yang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Shi Wu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Gang Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Hongwei Xiong
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jun Gong
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| |
Collapse
|
12
|
Yang J, Ming S, Yao G, Yu H, Du Y, Gong J. Construction of chiral chroman skeletons via catalytic asymmetric [4 + 2] cyclization of ortho-hydroxyphenyl-substituted para-quinone methides catalyzed by a chiral-at-metal rhodium complex. Org Chem Front 2022. [DOI: 10.1039/d2qo00302c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Construction of chiral chroman skeletons via catalytic asymmetric [4 + 2] cyclization of ortho-hydroxyphenyl-substituted p-QMs catalyzed by a chiral-at-metal rhodium complex.
Collapse
Affiliation(s)
- Jian Yang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Siliang Ming
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Gang Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Haifeng Yu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jun Gong
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| |
Collapse
|
13
|
Dey P, Rai P, Maji B. Recent Development of Bis-Cyclometalated Chiral-at-Iridium and Rhodium Complexes for Asymmetric Catalysis. ACS ORGANIC & INORGANIC AU 2021; 2:99-125. [PMID: 36855455 PMCID: PMC9954445 DOI: 10.1021/acsorginorgau.1c00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The field of asymmetric catalysis has been developing to access synthetically efficacious chiral molecules from the last century. Although there are many sustainable ways to produce nonracemic molecules, simplified and unique methodologies are always appreciated. In the recent developments of asymmetric catalysis, chiral-at-metal Lewis acid catalysis has been recognized as an attractive strategy. The catalysts coordinatively activate a substrate while serving the sole source of chirality by virtue of its helical environment. These configurationally stable complexes were utilized in a large number of asymmetric transformations, ranging from asymmetric Lewis acid catalysis to photoredox and electrocatalysis. Here we provide a comprehensive review of the current advancements in asymmetric catalysis utilizing iridium and rhodium-based chiral-at-metal complexes as catalysts. First, the asymmetric transformations via LUMO and HOMO activation assisted by a chiral Lewis acid catalyst are reviewed. In the second part, visible-light-induced asymmetric catalysis is summarized. The asymmetric transformation via the electricity-driven method is discussed in the final section.
Collapse
|
14
|
Ming S, Qurban S, Du Y, Su W. Asymmetric Synthesis of Multi-Substituted Tetrahydrofurans via Palladium/Rhodium Synergistic Catalyzed [3+2] Decarboxylative Cycloaddition of Vinylethylene Carbonates. Chemistry 2021; 27:12742-12746. [PMID: 34197006 DOI: 10.1002/chem.202102024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Unlike the comprehensive development of tandem multi-metallic catalysis, bimetallic synergistic catalysis has been challenging to achieve high stereoselectivity with the generation of multi-stereogenic centers. Herein, an efficient synergistic catalysis for the diastereo- and enantioselective synthesis of multi-substituted tetrahydrofuran derivatives has been developed. Under mild reaction conditions, a series of target molecules with three consecutive stereocenters were synthesized by a palladium(0)/rhodium(III) bimetal-catalyzed asymmetric decarboxylative [3+2]-cycloaddition of vinylethylene carbonates with α,β-unsaturated carbonyl compounds. The corresponding adducts were obtained with moderate to high yields (67 %∼98 %) and excellent stereoselectivities (>20 : 1 d.r., up to 99 % ee).
Collapse
Affiliation(s)
- Siliang Ming
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Saira Qurban
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
15
|
Chen M, Lu X, Ma X, Xiao Y, Wang Y. Click preparation of multiple-thioether bridged cyclodextrin chiral materials for efficient enantioseparation in high-performance liquid chromatography. Analyst 2021; 146:3025-3033. [PMID: 33949420 DOI: 10.1039/d1an00145k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient covalent immobilization procedure is considered as an essential tool for obtaining stable and reliable cyclodextrin (CD) chiral stationary phases (CSPs). This work reports the "thiolene" click immobilization of heptakis(6-mercapto-6-deoxy)-β-CD-CSP onto alkene functional silica to afford novel multiple-thioether bridged CD CSPs by controlling the surface CD concentration. Solid-state NMR, FTIR, TGA and X-ray photoelectron diffraction spectroscopy (XPS) results proved the successful preparation of the desired CSPs with different surface CD loadings. The surface CD concentrations were calculated to be 0.49 and 0.68 μmol m-2 according to the elemental analysis results. More than 60 chiral enantiomers including isoxazolines, chiral lactides, chiral ketones, dansyl amino acids, small molecule acids and alkalis as well as some flavonoids were resolved or partially separated in the reversed-phase HPLC mode. Compared with the previously prepared single thiolene bridged CD-CSP, the current multiple-thioether CD-CSP afforded much better enantioseparation ability due to the existence of the thiol moiety and a confined structure.
Collapse
Affiliation(s)
- Ming Chen
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinling Lu
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xiaofei Ma
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300072, P. R. China
| | - Yong Wang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
16
|
Intramolecular [3+2]-cycloaddition of salicylaldehydes-based cyclic azomethine imines to access novel tetrahydrochromeno[4,3-c]pyrazolo[1,2-a]pyrazol-9-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Li Z, Kumagai N, Shibasaki M. Catalytic Asymmetric 1,3-Dipolar Cycloaddition of α,β-Unsaturated Amide and Azomethine Imine. Chem Pharm Bull (Tokyo) 2021; 68:552-554. [PMID: 32475860 DOI: 10.1248/cpb.c20-00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α,β-Unsaturated amides were incorporated as viable dipolarophiles in a catalytic asymmetric 1,3-dipolar cycloaddition of azomethine imines. The use of a 7-azaindoline auxiliary was essential to acquire sufficient reactivity with excellent diastereoselectivity, likely due to the chelating activation of the amide by the In(III)/bishydroxamic acid complex. Although the enantioselectivity remains unsatisfactory, this work is an important step toward the development of an asymmetric catalysis utilizing stable and low-reactive substrates.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Microbial Chemistry
| | | | | |
Collapse
|
18
|
Deepthi A, Thomas NV, Sruthi SL. An overview of the reactions involving azomethine imines over half a decade. NEW J CHEM 2021. [DOI: 10.1039/d1nj01090e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Azomethine imines constitute a versatile class of 1,3-dipoles which was used extensively for biologically relevant N-heterocycle synthesis – a five-year recap.
Collapse
Affiliation(s)
- Ani Deepthi
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| | - Noble V. Thomas
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| | - S. L. Sruthi
- Department of Chemistry
- University of Kerala
- Thiruvananthapuram 695581
- India
| |
Collapse
|
19
|
Wan Q, Chen L, Li S, Kang Q, Yuan Y, Du Y. Enantioselective Synthesis of Multisubstituted Spirocyclopentane Oxindoles Enabled by Pd/Chiral Rh(III) Complex Synergistic Catalysis. Org Lett 2020; 22:9539-9544. [PMID: 33263254 DOI: 10.1021/acs.orglett.0c03588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Wan
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Shiwu Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Qiang Kang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Yaofeng Yuan
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| |
Collapse
|
20
|
Wan Q, Li S, Kang Q, Yuan Y, Du Y. Chiral-at-Metal Rh(III) Complex Catalyzed Cascade Reduction-Michael Addition Reaction. J Org Chem 2019; 84:15201-15211. [PMID: 31661265 DOI: 10.1021/acs.joc.9b02243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An enantioselective three-component cascade reduction-Michael addition reaction catalyzed by chiral-at-metal Rh(III) complexes has been developed. With a Hantzsch ester as the hydride source, a number of malononitrile derivatives were prepared in good yields and excellent enantioselectivities. A model that accounts for the origin and influence factors of the stereoselectivity has been proposed based on experiments.
Collapse
Affiliation(s)
- Qian Wan
- College of Chemistry , Fuzhou University , Fuzhou 350108 , P. R. China
| | - Shiwu Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou 350002 , P. R. China
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou 350002 , P. R. China
| | - Yaofeng Yuan
- College of Chemistry , Fuzhou University , Fuzhou 350108 , P. R. China
| | - Yu Du
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 Yangqiao Road West , Fuzhou 350002 , P. R. China
| |
Collapse
|
21
|
Hu L, Lin S, Li S, Kang Q, Du Y. Chiral‐at‐Metal Rhodium(III) Complex Catalyzed Enantioselective Vinylogous Michael Addition of
α
,
α
‐Dicyanoolefins with
α
,
β
‐Unsaturated 2‐Acyl Imidazoles. ChemCatChem 2019. [DOI: 10.1002/cctc.201901590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangjian Hu
- College of Material EngineeringFujian Agriculture and Forestry University Fuzhou 350002 P.R. China
| | - Shaoxia Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P.R. China
| | - Shiwu Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P.R. China
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P.R. China
| | - Yu Du
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 P.R. China
| |
Collapse
|
22
|
Volpe C, Meninno S, Capobianco A, Vigliotta G, Lattanzi A. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) Triggered Diastereoselective [3+2] Cycloaddition of Azomethine Imines and Pyrazoleamides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Giovanni Vigliotta
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”; Università di Salerno; Via Giovanni Paolo II 132 I-84084 Fisciano Italy
| |
Collapse
|
23
|
Yang QQ, Yin X, He XL, Du W, Chen YC. Asymmetric Formal [5 + 3] Cycloadditions with Unmodified Morita–Baylis–Hillman Alcohols via Double Activation Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04942] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian-Qian Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Long He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
24
|
Qurban S, Du Y, Gong J, Lin SX, Kang Q. Enantioselective synthesis of tetrahydroisoquinoline derivatives via chiral-at-metal rhodium complex catalyzed [3+2] cycloaddition. Chem Commun (Camb) 2019; 55:249-252. [DOI: 10.1039/c8cc08275h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An asymmetric [3+2] cycloaddition of C,N-cyclic azomethine imines with α,β-unsaturated 2-acyl imidazoles catalyzed by a chiral-at-metal rhodium complex has been developed.
Collapse
Affiliation(s)
- Saira Qurban
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yu Du
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Jun Gong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Shao-Xia Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| |
Collapse
|
25
|
Zhang H, Li S, Kang Q, Du Y. Chiral-at-metal rhodium(iii) complex catalyzed enantioselective synthesis of C2-substituted benzofuran derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo01022j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An enantioselective C2-nucleophilic functionalization of 3-aminobenzofurans has been realized under catalysis of chiral rhodium(iii) complexes, affording a large array of C2-substituted benzofuran derivatives in high yields and enantioselectivities.
Collapse
Affiliation(s)
- Haoran Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Shiwu Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Qiang Kang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yu Du
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| |
Collapse
|
26
|
Kou YD, Zhao ZN, Yang X, Kalita SJ, Chen XJ, Xie ZZ, Zhao Y, Huang YY. Stereospecific Synthesis of Fluorinated Pyrazolidinones and Isoxazolidines via a Catalyst-Free 1,3-Dipolar Cycloaddition of β-Fluoroalkylated α,β-Unsaturated 2-Pyridylsulfones. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying-Da Kou
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Zhen-Ni Zhao
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Xing Yang
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Subarna Jyoti Kalita
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Xue-Jian Chen
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Zhi-Zhong Xie
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures; International School of Materials Science and Engineering; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| | - Yi-Yong Huang
- Department of Chemistry; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 122 Luoshi Road, Wuhan 430070 Hubei China
| |
Collapse
|