1
|
Liang YJ, Gao YY, Han HB, Li L, Liu L. Enantioselective synthesis of 4-aryl-3,4-dihydrocoumarins via N-heterocyclic carbene catalyzed β-arylation/cyclization of α-bromoenals. Org Biomol Chem 2024; 22:5101-5104. [PMID: 38859801 DOI: 10.1039/d4ob00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
4-Aryl-3,4-dihydrocoumarins are one of the most important structural motifs. Herein, we disclose an enantioselective N-heterocyclic carbene catalyzed β-arylation/cyclization of α-bromoenals with 3-aminophenols under mild conditions. The protocol allows for the rapid preparation of 4-aryl-3,4-dihydrocoumarins in acceptable yields with good enantioselectivities. The products of this reaction could be converted into chiral diarylpropanoic acid derivatives without erosion of the enantioselectivity.
Collapse
Affiliation(s)
- Yu-Jing Liang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yuan-Yuan Gao
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Hua-Bo Han
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Lu Li
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Lantao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| |
Collapse
|
2
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
3
|
Zhang X, Zhou Q, Zhou Y, Wang Z, Wang J, Wang M. Asymmetric synthesis of chiral (thio)chromanes and exploration on their structure-activity relationship in macrophages. RSC Adv 2023; 13:30391-30400. [PMID: 37854489 PMCID: PMC10580023 DOI: 10.1039/d3ra06428j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
A CuCl/(R,R)-Ph-BPE-catalyzed enantioselective hydroallylation of 2H-chromenes and 2H-thiochromenes with allylic phosphate electrophiles is developed, which enables highly efficient and atom-economical asymmetric access to a series of 4-allyl chromanes and thiochromanes in high yields (up to 91%) with excellent enantioselectivities (up to 99% ee). These valuable chiral chromane and thiochromane products can serve as crucial intermediates for accessing bioactive compounds containing oxygen and sulfur atoms. In addition, the antioxidant and anti-inflammatory effects of various chromanes and thiochromanes were investigated in RAW 264.7 macrophages. The chromanes and thiochromanes exhibited significant inhibitory effects on the production of reactive oxygen species (ROS) and the secretion of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). These findings indicate that the newly synthesized chromanes and thiochromanes hold promise as potential lead compounds for the development of antioxidant and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Biological Science, The University of Hong Kong Hong Kong 999077 China
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Yue Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Zihao Wang
- School of Chinese Medicine, Hong Kong Baptist University Hong Kong 999077 China
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University Hong Kong 999077 China
| | - Jun Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
- Department of Chemistry, Hong Kong Baptist University Hong Kong 999077 China
| | - Mingfu Wang
- School of Biological Science, The University of Hong Kong Hong Kong 999077 China
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
4
|
Wang L, Tang Y. Side arm modified chiral bisoxazoline ligands: Recent development and prospect in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Chen Y, Li GX, Peng AQ, Tang Y, Wang L. Rapid Construction of Enantioenriched Benzofurochromanes by SaBOX/Copper(II) Catalyzed Enantioselective [3 + 2] Annulation of γ-Chromenes with Quinones. Org Lett 2022; 24:5525-5529. [DOI: 10.1021/acs.orglett.2c01933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Geng-Xie Li
- School of Physical Science and Technology, ShanghaiTech University, Middle Huaxia Road, Shanghai 201210, China
| | - Ai-Qing Peng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
6
|
Deng R, Han TJ, Gao X, Yang YF, Mei GJ. Further developments of β,γ-unsaturated α-ketoesters as versatile synthons in asymmetric catalysis. iScience 2022; 25:103913. [PMID: 35243262 PMCID: PMC8881726 DOI: 10.1016/j.isci.2022.103913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
7
|
Dai L, Xu D, Mao Y, Zhu J, Yang M. Structures and Synthetic Strategies of Chiral Oxazolinyl Ferrocene Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Qin H, Xie Q, He L. Diastereoselective synthesis of chroman bearing spirobenzofuranone scaffolds via oxa-Michael/1,6-conjugated addition of para-quinone methides with benzofuranone-type olefins. RSC Adv 2022; 12:16684-16687. [PMID: 35754894 PMCID: PMC9169491 DOI: 10.1039/d2ra03031d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 12/17/2022] Open
Abstract
A simple and convenient cyclization of ortho-hydroxyphenyl-substituted para-quinone methides with benzofuran-2-one type active olefins via oxa-Michael/1,6-conjugated addition has been developed, which afforded an easy access to enriched functionalized chroman-spirobenzofuran-2-one scaffolds with good to excellent yields (up to 90%) and diastereoselectivities (up to >19 : 1 dr). This reaction provided an efficient method for constructing desired spirocyclic compounds combining both well-known heterocyclic pharmacophores chroman and benzofuran-2-one. Highly diastereoselective synthesis of spirocyclic compounds combining both well-known heterocyclic pharmacophores chroman and benzofuran-2-one.![]()
Collapse
Affiliation(s)
- Hongmei Qin
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang, 550005, P. R. China
| | - Qimei Xie
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P. R. China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang, 550005, P. R. China
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P. R. China
| |
Collapse
|
9
|
Zhang MC, Wang DC, Qu GR, Guo HM. Catalytic Asymmetric Synthesis of Chiral Thiohydantoins via Domino Cyclization Reaction of β,γ-Unsaturated α-Ketoester and N,N'-Dialkylthiourea. Org Chem Front 2022. [DOI: 10.1039/d2qo00669c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first catalytic asymmetric route to synthesize chiral thiohydantoins containing a quaternary stereogenic center has been established utilizing a chiral phosphoric acid-catalyzed domino cyclization reaction of N,N'-dialkyl thioureas with β,γ-unsaturated...
Collapse
|
10
|
Yan H, Jia SK, Geng YH, Han JJ, Hua YZ, Wang MC. Dinuclear zinc-catalyzed asymmetric Friedel-Crafts alkylation/cyclization of 3-aminophenols with α,α-dicyanoolefins. Chem Commun (Camb) 2021; 57:9854-9857. [PMID: 34490871 DOI: 10.1039/d1cc04177k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An enantioselective Friedel-Crafts alkylation/cyclization tandem reaction of 3-aminophenols with α,α-dicyanoolefins has been performed successfully using a chiral dinuclear zinc catalyst, leading to a range of chiral 2-amino-4H-chromenes (up to 98% yield and >99% ee). To the best of our knowledge, this is the first asymmetric example of the dinuclear zinc-catalysed functionalization of aromatic C(sp2)-H bonds.
Collapse
Affiliation(s)
- Hang Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yu-Huan Geng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiao-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
12
|
Huang KX, Xie MS, Sang JW, Qu GR, Guo HM. Asymmetric Synthesis of 3-Amine-tetrahydrothiophenes with a Quaternary Stereocenter via Nickel(II)/Trisoxazoline-Catalyzed Sulfa-Michael/Aldol Cascade Reaction: Divergent Access to Chiral Thionucleosides. Org Lett 2021; 23:81-86. [PMID: 33332122 DOI: 10.1021/acs.orglett.0c03747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A generally useful Ni(II)/trisoxazoline-catalyzed asymmetric sulfa-Michael/Aldol cascade reaction is introduced to access chiral 3-amine-tetrahydrothiophene derivatives containing a quaternary stereocenter (32 examples, up to 93% yield, > 20:1 dr and 92% ee). Moreover, the novel strategy offers an efficient and convenient approach to construct chiral thionucleoside analogues.
Collapse
Affiliation(s)
- Ke-Xin Huang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473000, China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ji-Wei Sang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
14
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020; 59:18964-18969. [DOI: 10.1002/anie.202007068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
15
|
Chang Z, Yao J, Dou X. Rhodium‐Catalysed Asymmetric Synthesis of 4‐Alkyl‐4
H
‐Chromenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhiqian Chang
- Department of Chemistry, School of ScienceChina Pharmaceutical University Nanjing 211198 People‘s Republic of China
| | - Jian Yao
- Department of Chemistry, School of ScienceChina Pharmaceutical University Nanjing 211198 People‘s Republic of China
| | - Xiaowei Dou
- Department of Chemistry, School of ScienceChina Pharmaceutical University Nanjing 211198 People‘s Republic of China
| |
Collapse
|
16
|
Li Y, Zhang Y, Zhang H, Han Y, Zhao J. Asymmetric Epoxidation of α,β‐Unsaturated Ketones Catalyzed by Chiral Iron Complexes of (R,R)‐3,4‐Diaminopyrrolidine Derived N4‐Ligands with Camphorsulfonyl Sidearms. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuanfeng Li
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationHebei University of Technology Tianjin 300130 P. R. China
| | - Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy SavingHebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
17
|
Lv XJ, Zhao WW, Chen YH, Wan SB, Liu YK. Organocatalytic asymmetric synthesis of both cis- and trans-configured pyrano[2,3-b]chromenes via different dehydration pathways. Org Chem Front 2019. [DOI: 10.1039/c9qo00366e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enamine-catalyzed [3 + 3]-cycloaddition between chroman-2-ols and β,γ-unsaturated α-ketoesters is developed to access both enantiomers of cis- and trans-fused pyrano[2,3-b]chromene derivatives.
Collapse
Affiliation(s)
- Xue-Jiao Lv
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Wei-Wei Zhao
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ying-Han Chen
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Sheng-Biao Wan
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Yan-Kai Liu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
18
|
Affiliation(s)
- Lijia Wang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| | - Jian Zhou
- School of Chemistry; East China Normal University; 3663N Zhongshan Road, Shanghai 300062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 345 Lingling Road, Shanghai 200032 China
| |
Collapse
|
19
|
Huang KX, Xie MS, Zhang QY, Niu HY, Qu GR, Guo HM. Synthesis of Chiral Six-Membered Carbocyclic Purine Nucleosides via Organocatalytic Enantioselective [3 + 3] Annulation. Org Lett 2018; 20:5398-5401. [DOI: 10.1021/acs.orglett.8b02309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | | | | |
Collapse
|