1
|
Hiruma D, Yoshidome A, Rakumitsu K, Kitajima M, Hitora Y, Tsukamoto S, Schinnerl J, Brecker L, Ishikawa H. Bioinspired Total Synthesis and Structural Reidentification of Alstrostines. Chemistry 2025; 31:e202500069. [PMID: 39963014 DOI: 10.1002/chem.202500069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Alstrostine A and isoalstrostine A are monoterpenoid indole alkaloid glycosides with unique structures found in the plant families Apocynaceae and Rubiaceae. With molecular weights exceeding 900, nine chiral centers (excluding sugar rings), and complex fused-ring structures, the structural elucidation of these molecules using spectral analysis is highly challenging. Therefore, their structural identification through total synthesis is important in both natural product chemistry and synthetic organic chemistry. In this study, we successfully accomplished the first asymmetric total syntheses of these alkaloids in 18 or 19 steps. A key synthetic feature was a two- or three-component coupling reaction between secologanin and a pyrrolidinoindoline moiety based on our proposed biosynthetic pathway. This approach enabled the synthesis of all isomers of the pyrrolidinoindoline ring, which constitutes the upper fragment of the alstrostines, and allowed us to revise the stereochemistry of alstrostine A. Additionally, a compound previously isolated as alstrostine A from Palicourea luxurians (Rubiaceae) was successfully reidentified and renamed as epialstrostine A.
Collapse
Affiliation(s)
- Daiki Hiruma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Akiho Yoshidome
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kenta Rakumitsu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090, Vienna, Austria
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
2
|
Yang R, Zhou Z, Jiang H, Kam TS, Chen K, Ma Z. Asymmetric Synthesis of Arboduridine. Angew Chem Int Ed Engl 2024; 63:e202316016. [PMID: 38038685 DOI: 10.1002/anie.202316016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The first asymmetric total synthesis of the monoterpenoid indole alkaloid arboduridine has been accomplished. The tricyclic A/B/D ring system was constructed by an enantioselective Michael reaction followed by intramolecular nucleophilic addition. Intramolecular α-amination of a ketone forged the piperidine ring, while a Horner-Wadsworth-Emmons (HWE) reaction was used to form the pyrrolidine ring. A reduction cyclization cascade led to formation of the tetrahydrofuran ring.
Collapse
Affiliation(s)
- Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Zeyu Zhou
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P.R. China
| |
Collapse
|
3
|
Peng Q, Huang M, Xu G, Zhu Y, Shao Y, Tang S, Zhang X, Sun J. Asymmetric N-Alkylation of 1H-Indoles via Carbene Insertion Reaction. Angew Chem Int Ed Engl 2023; 62:e202313091. [PMID: 37819054 DOI: 10.1002/anie.202313091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
An intermolecular enantioselective N-alkylation reaction of 1H-indoles has been developed by cooperative rhodium and chiral phosphoric acid catalyzed N-H bond insertion reaction. N-Alkyl indoles with newly formed stereocenter adjacent to the indole nitrogen atom are produced in good yields (up to 95 %) with excellent enantioselectivities (up to >99 % ee). Importantly, both α-aryl and α-alkyl diazoacetates are tolerated, which is extremely rare in asymmetric X-H (X=N, O, S et al.) and C-H insertion reactions. With this method, only 0.1 mol % of rhodium catalyst and 2.5 mol % of chiral phosphoric acid are required to complete the conversion as well as achieve the high enantioselectivity. Computational studies reveal the cooperative relay of rhodium and chiral phosphoric acid, and the origin of the chemo and stereoselectivity.
Collapse
Affiliation(s)
- Quanxin Peng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
4
|
Mazeh S, Garcia-Fernandez MD, Pelletier B, Moreau C, Delair P. Total synthesis of the natural (-)-205B alkaloid and its activity toward α7 nAChRs. Org Biomol Chem 2023; 21:817-822. [PMID: 36601968 PMCID: PMC9972826 DOI: 10.1039/d2ob01723g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new approach to the synthesis of the (-)-205B alkaloid is described in this paper. This work is characterised by the development of an efficient chirality transfer through a silyl tethered intramolecular alkylation reaction, an unprecedented tandem highly selective iridium catalyzed partial reduction of lactam coupled with an acid promoted aza-Prins reaction, and an almost complete stereochemical control in Shenvi's radical hydrogen atom transfer on an exocyclic methylene. The second part of this work demonstrates the positive allosteric behavior of this natural alkaloid toward α7 nAChRs, in contrast to the reported inhibitory effect of the unnatural enantiomer.
Collapse
Affiliation(s)
- Sara Mazeh
- Départment de Pharmacochimie Moléculaire, Univ. Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5063, F-38041, Grenoble, France.
| | | | | | | | - Philippe Delair
- Départment de Pharmacochimie Moléculaire, Univ. Grenoble Alpes, ICMG FR-2607, CNRS, UMR-5063, F-38041, Grenoble, France.
| |
Collapse
|
5
|
Tan S, Liu JG, Xu MH. Rhodium-Catalyzed Asymmetric 1,4-Addition of α/β-( N-Indolyl) Acrylates. Org Lett 2022; 24:9349-9354. [PMID: 36441571 DOI: 10.1021/acs.orglett.2c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rhodium-catalyzed asymmetric 1,4-addition of α/β-(N-indolyl) acrylates to access highly enantioenriched chiral N-alkylindoles promoted by chiral diene or sulfur-olefin ligands under mild reaction conditions has been developed, which provides an efficient and practical approach for constructing carbon stereocenters adjacent to the indole nitrogen. The reaction can be applied to various N-indolyl-substituted α,β-unstaturated esters and arylboron reagents, providing access to a wide range of α- and β-(N-indolyl) propionate derivatives in high yields with excellent enantioselectivities (≤99% ee).
Collapse
Affiliation(s)
- Shuting Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian-Guo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
7
|
Li Z, Zhao F, Ou W, Huang P, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
8
|
Li Z, Zhao F, Ou W, Huang PQ, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021; 60:26604-26609. [PMID: 34596947 DOI: 10.1002/anie.202111029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 12/15/2022]
Abstract
A variety of inert tertiary amides have been successfully transformed into synthetically important chiral propargylamines in high yields with good to excellent enantioselectivities via a relayed sequence of Ir catalyzed partial reduction and Cu/GARPHOS catalyzed asymmetric alkynylation with terminal alkynes. The reaction was readily extended to some drug molecules and the transformations of representative products have been demonstrated, thus attesting the practical utilities and the robust nature of the protocol.
Collapse
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
9
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
10
|
Matheau‐Raven D, Dixon DJ. General α-Amino 1,3,4-Oxadiazole Synthesis via Late-Stage Reductive Functionalization of Tertiary Amides and Lactams*. Angew Chem Int Ed Engl 2021; 60:19725-19729. [PMID: 34191400 PMCID: PMC8457168 DOI: 10.1002/anie.202107536] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/25/2023]
Abstract
An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol %) Vaska's complex (IrCl(CO)(PPh3 )2 ) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of α-amino 1,3,4-oxadiazole architectures were accessed from carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. The high chemoselectivity of the catalytic reductive activation step allowed late-stage functionalization of 10 drug molecules, including the synthesis of heterodiazole-fused drug-drug conjugates.
Collapse
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Darren J. Dixon
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| |
Collapse
|
11
|
Matheau‐Raven D, Dixon DJ. General α‐Amino 1,3,4‐Oxadiazole Synthesis via Late‐Stage Reductive Functionalization of Tertiary Amides and Lactams**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
12
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
13
|
Hu XN, Wu DP, Xu YP, Huang PQ. Organocatalytic Asymmetric Synthesis of an Advanced Intermediate of (+)-Sarain A. Chemistry 2021; 27:609-613. [PMID: 33044771 DOI: 10.1002/chem.202004261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/11/2020] [Indexed: 12/13/2022]
Abstract
The first organocatalytic asymmetric synthesis of an advanced intermediate of (+)-sarain A was achieved. This approach featured the employment of an organocatalytic asymmetric Michael addition reaction and a nitrogen-to-carbon chirality transfer to forge three chiral centers, as well as a catalytic hydrosilylation for the chemoselective reduction of a key lactam intermediate. The tricyclic intermediate contained all the required functionalities for elaborating into (+)-sarain A.
Collapse
Affiliation(s)
- Xiu-Ning Hu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Dong-Ping Wu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Ye-Peng Xu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
14
|
He Y, Wang X. Synthesis of Cyclic Amidines by Iridium-Catalyzed Deoxygenative Reduction of Lactams and Tandem Reaction with Sulfonyl Azides. Org Lett 2020; 23:225-230. [DOI: 10.1021/acs.orglett.0c03953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Youliang He
- State Key Laboratory of Oganometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiaoming Wang
- State Key Laboratory of Oganometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
15
|
Luo S, Huang X, Guo L, Huang P. Catalytic Asymmetric Total Synthesis of Macrocyclic Marine Natural Product (–)‐Haliclonin A
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shi‐Peng Luo
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology Changzhou Jiangsu 213001 China
| | - Xiong‐Zhi Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Lian‐Dong Guo
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
16
|
Matheau-Raven D, Gabriel P, Leitch JA, Almehmadi YA, Yamazaki K, Dixon DJ. Catalytic Reductive Functionalization of Tertiary Amides using Vaska’s Complex: Synthesis of Complex Tertiary Amine Building Blocks and Natural Products. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02377] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel Matheau-Raven
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Pablo Gabriel
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jamie A. Leitch
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yaseen A. Almehmadi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ken Yamazaki
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Darren J. Dixon
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
17
|
Tahara A, Nagashima H. Recent topics of iridium-catalyzed hydrosilylation of tertiary amides to silylhemiaminals. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Liu ZJ, Huang PQ. Biomimetic Enantioselective Total Synthesis of (-)-Robustanoids A and B and Analogues. J Org Chem 2019; 84:5627-5634. [PMID: 30957497 DOI: 10.1021/acs.joc.9b00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a step-economical, enantioselective total synthesis of (-)-robustanoid B and (-)-robustanoid A and four novel natural product-like compounds. Our strategy relied on our biosynthetic hypothesis and on a novel complexity generation methodology, namely, the one-pot hydroxylative double cyclization reaction. The latter consists of a modified 3,3-dimethyldioxirane-triggered epoxidation-epoxide-ring-opening cyclization reaction cascade and Trost's regioselectivity umpolung methodology ("anti-Michael addition").
Collapse
Affiliation(s)
- Zhan-Jiang Liu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| |
Collapse
|
19
|
Yang ZP, Lu GS, Ye JL, Huang PQ. Ir-catalyzed chemoselective reduction of β-amido esters: A versatile approach to β-enamino esters. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Huang YH, Wang SR, Wu DP, Huang PQ. Intermolecular Dehydrative [4 + 2] Aza-Annulation of N-Arylamides with Alkenes: A Direct and Divergent Entrance to Aza-Heterocycles. Org Lett 2019; 21:1681-1685. [DOI: 10.1021/acs.orglett.9b00233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ying-Hong Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Shu-Ren Wang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Dong-Ping Wu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
21
|
Liang K, Tong X, Li T, Shi B, Wang H, Yan P, Xia C. Enantioselective Radical Cyclization of Tryptamines by Visible Light-Excited Nitroxides. J Org Chem 2018; 83:10948-10958. [PMID: 30091607 DOI: 10.1021/acs.joc.8b01597] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitroxides can absorb both ultraviolet (UV) and visible light, and their electron can be excited from the π-bonding orbital to the antibonding π* orbital or the n-bonding orbital to the antibonding π* orbital, respectively. Despite the reported UV-induced hydrogen atom transfer (HAT) process, the potential of nitroxides for visible light-excited photosynthesis is underexplored. Here we demonstrate that nitroxide can convert indole to its radical through a visible light-induced HAT process. A chiral phosphoric acid-catalyzed cyclization of the in situ-formed imine radical, followed by trapping by another molecule of nitroxide, provides the product in high yield and enantioselectivity. To highlight the novelty and efficiency of this strategy, an asymmetric total synthesis of natural product (-)-verrupyrroloindoline was accomplished in 5 steps.
Collapse
Affiliation(s)
- Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences , Chinese Academy of Sciences , Kunming 650201 , China
| | - Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Tao Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Bingfei Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Haiyang Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Pengcheng Yan
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province), School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|