1
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Shao LD, Chen Y, Wang M, Xiao N, Zhang ZJ, Li D, Li RT. Palladium-Catalyzed Direct γ-C(sp3)-H Arylation of β-Alkoxy Cyclohexenones: Reaction Scope and Mechanistic Insights. Org Chem Front 2022. [DOI: 10.1039/d1qo01871j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct γ-C(sp3)-arylation of unactivated electron-rich enones is a long-standing challenge. Herein, we report a mild Pd-catalyzed method for direct γ-C(sp3)-arylation of various unactivated β-alkoxy cyclohexenones. The method is not only...
Collapse
|
3
|
Aguillón AR, Leão RAC, Miranda LSM, de Souza ROMA. Cannabidiol Discovery and Synthesis-a Target-Oriented Analysis in Drug Production Processes. Chemistry 2021; 27:5577-5600. [PMID: 32780909 DOI: 10.1002/chem.202002887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Indexed: 01/13/2023]
Abstract
The current state of evidence and recommendations for cannabidiol (CBD) and its health effects change the legal landscape and aim to destigmatize its phytotherapeutic research. Recently, some countries have included CBD as an antiepileptic product for compassionate use in children with refractory epilepsy. The growing demand for CBD has led to the need for high-purity cannabinoids on the emerging market. The discovery and development of approaches toward CBD synthesis have arisen from the successful extraction of Cannabis plants for cannabinoid fermentation in brewer's yeast. To understand different contributions to the design and enhancement of the synthesis of CBD and its key intermediates, a detailed analysis of the history behind cannabinoid compounds and their optimization is provided herein.
Collapse
Affiliation(s)
- Anderson R Aguillón
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Raquel A C Leão
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| | - Leandro S M Miranda
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| |
Collapse
|
4
|
Golliher AE, Tenorio AJ, Dimauro NO, Mairata NR, Holguin FO, Maio W. Using (+)-Carvone to access novel derivatives of (+)- ent-Cannabidiol: the first asymmetric syntheses of (+)- ent-CBDP and (+)- ent-CBDV. Tetrahedron Lett 2021; 67:152891. [PMID: 34658452 PMCID: PMC8513745 DOI: 10.1016/j.tetlet.2021.152891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(-)-Cannabidiol [(-)-CBD] has recently gained prominence as a treatment for neuro-inflammation and other neurodegenerative disorders; interest is also developing in its synthetic enantiomer, (+)-CBD, which has a higher affinity to CB1 / CB2 receptors than the natural stereoisomer. We have developed an inexpensive, stereoselective route to access ent-CBD derivatives using (+)-carvone as a starting material. In addition to (+)-CBD, we report the first syntheses of (+)-cannabidivarin, (+)-cannabidiphorol as well as C-6 / C-8 homologues.
Collapse
Affiliation(s)
- Alexandra E. Golliher
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - Antonio J. Tenorio
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - Nina O. Dimauro
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - Nicolas R. Mairata
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| | - F. Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003
| | - William Maio
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003
| |
Collapse
|
5
|
Morales P, Jagerovic N. Synthetic and Natural Derivatives of Cannabidiol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:11-25. [PMID: 33537934 DOI: 10.1007/978-3-030-61663-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The non-psychoactive component of Cannabis Sativa, cannabidiol (CBD), has centered the attention of a large body of research in the last years. Recent clinical trials have led to the FDA approval of CBD for the treatment of children with drug-resistant epilepsy. Even though it is not yet in clinical phases, its use in sleep-wake pathological alterations has been widely demonstrated.Despite the outstanding current knowledge on CBD therapeutic effects in numerous in vitro and in vivo disease models, diverse questions still arise from its molecular pharmacology. CBD has been shown to modulate a wide variety of targets including the cannabinoid receptors, orphan GPCRs such as GPR55 and GPR18, serotonin, adenosine, and opioid receptors as well as ligand-gated ion channels among others. Its pharmacology is rather puzzling and needs to be further explored in the disease context.Also, the metabolism and interactions of this phytocannabinoid with other commercialized drugs need to be further considered to elucidate its clinical potential for the treatment of specific pathologies.Besides CBD, natural and synthetic derivatives of this chemotype have also been reported exhibiting diverse functional profiles and providing a deeper understanding of the potential of this scaffold.In this chapter, we analyze the knowledge gained so far on CBD and its analogs specially focusing on its molecular targets and metabolic implications. Phytogenic and synthetic CBD derivatives may provide novel approaches to improve the therapeutic prospects offered by this promising chemotype.
Collapse
|
6
|
Denhez C, Lameiras P, Berber H. Intramolecular OH/π versus C–H/O H-Bond-Dependent Conformational Control about Aryl–C(sp3) Bonds in Cannabidiol Derivatives. Org Lett 2019; 21:6855-6859. [DOI: 10.1021/acs.orglett.9b02484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Clément Denhez
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
- Université de Reims Champagne Ardenne, MaSCA, P3M, 51097 Reims, France
| | - Pedro Lameiras
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Hatice Berber
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
7
|
Bloemendal VRLJ, Sondag D, Elferink H, Boltje TJ, van Hest JCM, Rutjes FPJT. A Revised Modular Approach to (-)- trans-Δ 8-THC and Derivatives Through Late-Stage Suzuki-Miyaura Cross-Coupling Reactions. European J Org Chem 2019; 2019:2289-2296. [PMID: 31423106 PMCID: PMC6686972 DOI: 10.1002/ejoc.201900059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 12/21/2022]
Abstract
A revised modular approach to various synthetic (-)-trans-Δ8-THC derivatives through late-stage Suzuki-Miyaura cross-coupling reactions is disclosed. Ten derivatives were synthesized allowing both sp2- and sp3-hybridized cross-coupling partners with minimal β-hydride elimination. Importantly, we demonstrate that a para-bromo-substituted THC scaffold for Suzuki-Miyaura cross-coupling reactions has been initially reported incorrectly in recent literature.
Collapse
Affiliation(s)
| | - Daan Sondag
- Institute for Molecules and MaterialsHeyendaalseweg 135NL‐6525 AJNijmegenThe Netherlands
| | - Hidde Elferink
- Institute for Molecules and MaterialsHeyendaalseweg 135NL‐6525 AJNijmegenThe Netherlands
| | - Thomas J. Boltje
- Institute for Molecules and MaterialsHeyendaalseweg 135NL‐6525 AJNijmegenThe Netherlands
| | - Jan. C. M. van Hest
- Eindhoven University of TechnologyP.O. Box 513 (STO 3.31)NL‐5600 MBEindhovenThe Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsHeyendaalseweg 135NL‐6525 AJNijmegenThe Netherlands
| |
Collapse
|