1
|
Kant K, Naik P, Jyoti, Aljaar N, Malakar CC. Ionic liquids in C-H activation: synthesis and functionalization of heterocycles and carbocycles. Org Biomol Chem 2025; 23:4260-4305. [PMID: 40197982 DOI: 10.1039/d4ob02109f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
This review illustrates various roles played by ionic liquids in organic transformations, such as solvents, additives, promoters, electrolytes and catalysts for the synthesis and functionalization of heterocycles and carbocycles through C-H activation reactions. Ionic liquids offer several advantages such as high stability, intrinsic conductivity, non-volatility, and recyclability, making them appealing alternatives to traditional organic solvents in sustainable organic synthesis. Their unique properties enhance reaction performance, as seen with recyclable [EMIM]BF4 in quinazolinone synthesis and [TMG][CF3COO] in amide production, direct diarylation of 6,7-benzindoles, regioselective reactions with aryl iodides, catalytic cyclopropanation with tetrabutylammonium acetate (TBAA), and propargylamine synthesis via A3 coupling reactions. The use of functionalized ionic liquids like [Bmim]PF6 with phosphine-ligated Pd(II) enhances product isolation, facilitates reactions under mild conditions, and promotes reusability, contributing to environmentally friendly pathways. Thus, this review highlights various ionic liquids used in different reactions, emphasizing their benefits in improving yields, solubility, and product separation in catalytic processes.
Collapse
Affiliation(s)
- Kamal Kant
- Department of Chemistry, National Institute of Technology Manipur, Imphal - 795004, India.
| | - Priyadarshini Naik
- Department of Chemistry, National Institute of Technology Manipur, Imphal - 795004, India.
| | - Jyoti
- Department of Chemistry, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Nayyef Aljaar
- Department of Chemistry, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology Manipur, Imphal - 795004, India.
| |
Collapse
|
2
|
Qiu X, Qu G, Cui B, Cao C, Shi Y. Palladium Catalyzed Cyanation of Diaryl Sulfoxides. J Org Chem 2024; 89:17729-17737. [PMID: 39511133 DOI: 10.1021/acs.joc.4c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Aryl nitriles are highly versatile and useful compounds. A palladium-catalyzed cyanation of diaryl sulfoxides using bench-stable Zn(CN)2 as the cyanating reagent has been developed. The reaction proceeded well using Pd(OAc)2 as the catalyst with the inexpensive ligand PCy3 in the presence of t-BuONa. The method has a broad scope of substrates and is scalable. The regioselective cyanation of unsymmetrical diaryl sulfoxides was observed at the side of electron-deficient and more steric hindered aryl groups.
Collapse
Affiliation(s)
- Xianchao Qiu
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangcai Qu
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Benqiang Cui
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Changsheng Cao
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhui Shi
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
3
|
Hashimoto R, Hanaya K, Sugai T, Higashibayashi S. Unified short syntheses of oxygenated tricyclic aromatic diterpenes by radical cyclization with a photoredox catalyst. Commun Chem 2023; 6:169. [PMID: 37604953 PMCID: PMC10442340 DOI: 10.1038/s42004-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
The biomimetic two-phase strategy employing polyene cyclization and subsequent oxidation/substitution is an effective approach for divergent syntheses of [6-6-6]-tricyclic diterpenes. However, this strategy requires lengthy sequences for syntheses of oxygenated tricyclic aromatic abietane/podocarpane diterpenes owing to the many linear oxidation/substitution steps after cyclization. Here, we present a new synthetic route based on a convergent reverse two-phase strategy employing a reverse radical cyclization approach, which enabled the unified short syntheses of four aromatic abietane/podocarpane diterpenes and the divergent short syntheses of other related diterpenes. Oxygenated and substituted precursors for cyclization were convergently prepared through Friedel-Crafts acylation and rhodium-catalyzed site-selective iodination. Radical redox cyclization using an iridium photoredox catalyst involving neophyl rearrangement furnished the thermodynamically favored 6-membered ring preferentially. (±)-5,6-Dehydrosugiol, salvinolone, crossogumerin A, and Δ5-nimbidiol were synthesized in only 8 steps. An oxygenated cyclized intermediate was also useful for divergent derivatization to sugiol, ferruginol, saprorthoquinone, cryptomeriololide, and salvinolone.
Collapse
Affiliation(s)
- Riichi Hashimoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
4
|
Zhang J, Zou M, Tian Q, Sun Z, Chu W. N-Cyano-2,2'-biphenyldicarboimide as a Cyanation Reagent for Co(III)-Catalyzed C-H Cyanation of Indoles in Ionic Liquids. Org Lett 2023; 25:1436-1440. [PMID: 36856532 DOI: 10.1021/acs.orglett.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A mild strategy for Co(III)-catalyzed C(sp2)-H cyanation of indoles was developed by using NCBLD as an electrophilic cyanation reagent and 1-butyl-3-acetylimidazole ditrifluoromethylsulfonimide ([BAIM]NTf2) as an environmentally friendly and recyclable solvent, and a series of 2-cyano products were obtained at room temperature. Adopting this strategy, the unnatural nucleotide fragment precursor of Remdesivir, which was a drug for COVID-19, was synthesized through cyano transformation, further proving the practicability of this cyanation method.
Collapse
Affiliation(s)
- Jingchao Zhang
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - MengQi Zou
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - QinYe Tian
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
5
|
Wienecke P, Arndt HD. Direct C-H Cyanation by ICN Formed In Situ: Nannozinone B. Org Lett 2023; 25:1188-1191. [PMID: 36763903 DOI: 10.1021/acs.orglett.3c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
A novel method for C-H cyanation of different pyrans, pyrroles, indoles, and acyclic nucleophilic double bonds using TMSCN, NIS, and Zn(OTf)2 as a catalyst is described. The transformation is conducted under mild conditions tolerating a variety of functional groups. Zn(OTf)2 is likely to serve a dual catalytic role as an activator for TMSCN and for the cyanogen iodide generated in situ. Optimization, the substrate scope, and mechanistic observations are reported. Furthermore, this method is applied in the first total synthesis of the natural product nannozinone B.
Collapse
Affiliation(s)
- Paul Wienecke
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstrasse 10, D-07743 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität, Institut für Organische und Makromolekulare Chemie, Humboldtstrasse 10, D-07743 Jena, Germany
| |
Collapse
|
6
|
He X, Chen Z, Zhu X, Liu H, Chen Y, Sun Z, Chu W. Photoredox-catalyzed trifluoromethylation of 2 H-indazoles using TT-CF 3+OTf - in ionic liquids. Org Biomol Chem 2023; 21:1814-1820. [PMID: 36748884 DOI: 10.1039/d3ob00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A protocol for metal and oxidant free photoredox catalyzed trifluoromethylation of 2H-indazoles was developed by using Eosin Y as the photocatalyst and recoverable ionic liquids as the solvents. A series of trifluoromethylated products were obtained in moderate to good yields in this protocol under mild conditions. The reaction proceeded via a free-radical mechanism with a broad substrate range, excellent regioselectivity, and good functional group tolerance. Furthermore, the utility of this protocol was demonstrated by the synthesis of a highly selective ligand for estrogen receptor beta (ERβ) and the drug granisetron. The protocol provides a mild and environmentally friendly solution for trifluoromethylation reaction.
Collapse
Affiliation(s)
- Xin He
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhicheng Chen
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xianghui Zhu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Hao Liu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yanjie Chen
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
7
|
Wang C, Ma Z, Hou X, Yang L, Chen Y. Research and Application of N-Ts Cyanamides in Organic Synthesis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Ru(III)-catalyzed construction of variously substituted quinolines from 2-aminoaromatic aldehydes (ketones) and isoxazoles: Isoxazoles as cyclization reagent and cyano sources. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Guguloth V, Balaboina R, Thirukovela NS, Vadde R. One-pot synthesis of 3-aminofurans using a simple and efficient recyclable CuI/[bmim]PF 6 system. Org Biomol Chem 2021; 19:7438-7445. [PMID: 34612362 DOI: 10.1039/d1ob01132d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot three-component reaction of several 2-ketoaldehydes, secondary amines and terminal alkynes to access 3-aminofurans proceeded well in [bmim][PF6] using a simple and cheap CuI catalyst. The resultant 3-aminofuran products were easily isolated using diethyl ether and the CuI/[bmim][PF6] system was reused six times with a slight decrease in the activity.
Collapse
Affiliation(s)
- Veeranna Guguloth
- Department of Chemistry, Kakatiya University, Warangal, T.S., India.
| | | | | | | |
Collapse
|
11
|
Soumya PK, Vaishak TB, Saranya S, Anilkumar G. Recent advances in the rhodium‐catalyzed cyanation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
12
|
Zhao C, Yang S, Cheng Y, Qu R, Huang X, Liu H. Mechanistic Insight into Pd(II)-Catalyzed Late-Stage Nondirected C(sp 2)-H Cyanation of Toluene Using the Dual Ligands MPAA and Quinoxaline: A Density Functional Theory Investigation. J Org Chem 2021; 86:10526-10535. [PMID: 34279941 DOI: 10.1021/acs.joc.1c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory (DFT) calculations were performed to investigate the mechanism of Pd(II)-catalyzed late-stage nondirected C(sp2)-H cyanation of toluene. We confirmed the resting state and catalytic active species of this stoichiometric reaction, and we calculated the full catalytic cycle to obtain a favorable reaction pathway. The DFT calculation results indicate that the morphology of the active species is essential for the observed concerted metalation/deprotonation step. Although C-H activation is reversible in principle, it is the regioselectivity- or product-determining step. Our calculation results show that the regioselectivity is not only influenced by the electron effects but also by the potential steric repulsion interactions between the substrates and the specific geometry of the catalyst. Interestingly, the transmetalation process involves the largest overall change in free energy; thus, transmetalation is defined as the rate-determining step and turnover-determining step.
Collapse
Affiliation(s)
- Chaoyu Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Siwei Yang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Yaxuan Cheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Ruxin Qu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Xuri Huang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| |
Collapse
|
13
|
Abstract
An electrochemical approach for the site-selective C-H cyanation of indoles employing readily available TMSCN as cyano source has been developed. The electrosynthesis relies on the tris(4-bromophenyl)amine as a redox catalyst, which achieves better yield and regioselectivity. A variety of C2- and C3-cyanated indoles were obtained in satisfactory yields. The reactions are conducted in a simple undivided cell at room temperature and obviate the need for transition-metal reagent and chemical oxidant.
Collapse
Affiliation(s)
- Laiqiang Li
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry Taizhou University, Taizhou 318000, P.R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| |
Collapse
|
14
|
Rui X, Zhu Y, Dai R, Huang C, Wang C, Si D, Wang X, Zhang X, Wen H, Li W, Liu J. An Efficient, Sustainable Rhodium‐Catalyzed and Ionic Liquid‐Mediated C−H Thiolation and Selenation of Acetanilide with Diaryl Disulfides and Diaryl Diselenides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiyan Rui
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Yueyue Zhu
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Rupeng Dai
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Chaoqun Huang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Chao Wang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Dongjuan Si
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Xi Wang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Xiaoyuan Zhang
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Hongmei Wen
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Wei Li
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| | - Jian Liu
- School of Pharmacy Nanjing University of Chinese Medicine 210023 Nanjing P. R. China
| |
Collapse
|
15
|
Ma J, Liu H, He X, Chen Z, Liu Y, Hou C, Sun Z, Chu W. Ni-Catalyzed C–H Cyanation of (Hetero)arenes with 2-Cyanoisothiazolidine 1,1-Dioxide as a Cyanation Reagent. Org Lett 2021; 23:2868-2872. [DOI: 10.1021/acs.orglett.1c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junjie Ma
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Hao Liu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Xin He
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Zhicheng Chen
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Yue Liu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Chuanfu Hou
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| |
Collapse
|
16
|
Pimparkar S, Koodan A, Maiti S, Ahmed NS, Mostafa MMM, Maiti D. C–CN bond formation: an overview of diverse strategies. Chem Commun (Camb) 2021; 57:2210-2232. [DOI: 10.1039/d0cc07783f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aim for cyanation: a comprehensive overview on various approaches on C–CN bond formation in arenes/heteroarenes by activated halides/pseudohalide, directed, non-directed, electro-catalyzed, photoredox-catalyzed, and radical approaches.
Collapse
Affiliation(s)
| | | | | | - Nesreen S. Ahmed
- Department of Therapeutic Chemistry
- National Research Centre
- Cairo-12622
- Egypt
| | | | | |
Collapse
|
17
|
Cheng HC, Guo PH, Ma JL, Hu XQ. Directing group strategies in catalytic sp2 C–H cyanations: scope, mechanism and limitations. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00241d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Directing group strategy in transition metal catalyzed sp2 C–H bond cyanation has contributed to the direct conversion of hydrocarbons to cyano-containing compounds. Recent developments in transition metal-mediated sp2 C–H bond cyanation using this strategy are reviewed.
Collapse
Affiliation(s)
- Hui-cheng Cheng
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Peng-hu Guo
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Jiao-li Ma
- College of Chemistry
- Guangdong University of Petrochemical Technology
- Maoming 525000
- PR China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
18
|
Li J, Shi L, Zhang SP, Wang XY, Zhu X, Hao XQ, Song MP. Rh(III)-Catalyzed C-H Cyanation of 2 H-Indazole with N-Cyano- N-phenyl- p-toluenesulfonamide. J Org Chem 2020; 85:10835-10845. [PMID: 32692175 DOI: 10.1021/acs.joc.0c01386] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A Rh(III)-catalyzed direct cyanation of 2H-indazoles with N-cyano-N-phenyl-p-toluenesulfonamide has been realized via a chelation-assisted strategy. The methodology enables regioselective access to various ortho-cyanated phenylindazoles in good yields with a broad substrate scope and good functional group compatibility. The obtained cyanated indazoles could further be converted into other value-added chemicals. Importantly, the current protocol is featured with several characteristics, including a novel cyanating agent, good regioselectivity, and operational convenience.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Shu-Ping Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xu-Yan Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
19
|
Ding H, Lv G, Chen Y, Luo Y, Li J, Guo L, Wu Y. Synthesis of 2,3‐dihydrofurans
via
Lewis acid‐Catalyzed [4+1] Cycloaddition of Enynones with Sulfoxonium Ylides in Ionic Liquids: A Mild and Green Platform. ChemistrySelect 2020. [DOI: 10.1002/slct.202002188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haosheng Ding
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Guanghui Lv
- Department of Pharmacy, Taihe HospitalHubei University of Medicine No. 32 South Renmin Road Huibei, Shiyan 442000 P. R. China
| | - Yuncan Chen
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Li Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal ChemistryWest China School of Pharmacy, Sichuan University Chengdu 610041 P. R. of China
| |
Collapse
|
20
|
Zhang X, Zhu P, Zhang R, Li X, Yao T. Visible-Light-Induced Decarboxylative Cyclization of 2-Alkenylarylisocyanides with α-Oxocarboxylic Acids: Access to 2-Acylindoles. J Org Chem 2020; 85:9503-9513. [PMID: 32600039 DOI: 10.1021/acs.joc.0c00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient and practical protocol for visible-light-induced decarboxylative cyclization of 2-alkenylarylisocyanides with α-oxocarboxylic acids has been developed, which afforded a broad range of 2-acylindoles in moderate to good yields. The reaction proceeds through a cascade of acyl radical addition/cyclization reactions under irradiation of an Ir3+ photoredox catalyst without external oxidants and features simple operation, scalability, a broad substrate scope, and good functional group tolerance.
Collapse
Affiliation(s)
- Xiaofei Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Peiyuan Zhu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ruihong Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
21
|
Muntzeck M, Pippert F, Wilhelm R. Tetraalkylammonium-based ionic liquids for a RuCl3 catalyzed C–H activated homocoupling. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Prim D, Large B. C–H Functionalization Strategies in the Naphthalene Series: Site Selections and Functional Diversity. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naphthalene is certainly not a common arene. In contrast to benzene, the bicyclic feature of naphthalene offers multiple differentiable positions and thus a broad diversity of substitution patterns. Naphthalene is a central building block for the construction of elaborated polycyclic architectures with applications in broad domains such as life and materials sciences. As a result, C–H functionalization strategies specially designed for naphthalene substrates have become essential to install valuable substituents on one or both rings towards polysubstituted naphthalenes. This short review provides a focus on uncommon substitution patterns; however, classical ortho C–H activation is not covered.1 Introduction2 C–H Functionalization Using a Directing Group Located at Position 12.1 Functionalization on the Ring Bearing the DG: 1,3-Substitution Pattern2.2 Functionalization on the Ring Bearing the DG: 1,4-Substitution Pattern2.3 Functionalization on the Neighboring Ring: 1,6-, 1,7- and 1,8-Substitution Patterns3 C–H Functionalization Using a Directing Group Located at Position 23.1 Functionalization on the Ring Bearing the DG: 2,4- and 2,1-Substitution Patterns3.2 Miscellaneous Substitution Patterns4 Bis C–H Functionalization4.1 Symmetrical Bisfunctionalization: 1,2,8-Substitution Pattern4.2 Symmetrical Bisfunctionalization: 2,3,1-Substitution Pattern4.2 Unsymmetrical Bisfunctionalization: 2,3,1-Substitution Pattern4.3 Symmetrical Bisfunctionalization: 2,4,8-Substitution Pattern5 Conclusion and Outlook
Collapse
Affiliation(s)
- Damien Prim
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles
| | | |
Collapse
|
23
|
Shi Y, Xing H, Huang T, Liu X, Chen J, Guo X, Li GB, Wu Y. Divergent C-H activation synthesis of chalcones, quinolones and indoles. Chem Commun (Camb) 2020; 56:1585-1588. [PMID: 31934691 DOI: 10.1039/c9cc08926h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We here report a condition-controlled divergent synthesis strategy of chalcones, quinolones and indoles, which was achieved via a C-H activation reaction of N-nitrosoanilines and cyclopropenones. Variations of Ag salts are observed to be crucial for divergently constructing the three distinct chemical scaffolds. A Rh(i)- and Rh(iii)-cocatalyzed decarbonylation/C-H activation/[3+2] annulation cascade reaction was developed for the synthesis of indoles. These methodologies are characterized by mild reaction conditions, high functional group tolerance, and amenability to gram-scale synthesis, providing a reference for future derivation of new chemical scaffolds by C-H activation.
Collapse
Affiliation(s)
- Yuesen Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Huimin Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xuexin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiaoyu Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Kong X, Xu B. OrthoC H amidations enabled by a recyclable manganese-ionic liquid catalytic system. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Du K, Yao T. The C-H activated controlled mono- and di-olefination of arenes in ionic liquids at room temperature. RSC Adv 2020; 10:3203-3211. [PMID: 35497718 PMCID: PMC9048982 DOI: 10.1039/c9ra09736h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023] Open
Abstract
In this study, controlled mono and di-olefination of arenes was first realized at room temperature via the C-H bond activation in ionic liquids, probably due to the positive effects of ionic liquids. It is an energy-saving routes in industrial production without the need for heating equipment. Different catalysts were screened, and it was found that [Ru(p-cymene)Cl2]2 generated mono-olefinated products predominantly while [Cp*RhCl2]2 selectively gave di-olefinated products. These catalysts ([BMIM]NTf2 and [BMIM]PF6) as green and recyclable reaction media are highly efficient under mild conditions. This reaction process can avoid any volatile and environmentally toxic organic solvents, and is much safer without the need for pressure-tight equipment. A wide substrate scope with good yields and satisfactory selectivity was achieved. The reactions can be scaled up to gram-scale. Furthermore, an expensive rhodium/ruthenium catalytic system was recycled for at least 6 times with consistently high catalytic activity, which was economical and environmental friendly from an industrial point of view. According to the mechanistic study, the C-H bond cleavage was probably achieved via the concerted metalation-deprotonation. This technique can be applied in the synthesis of various valuable unsaturated aromatic compounds and shows a great potential for industrial production.
Collapse
Affiliation(s)
- Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Tian Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
26
|
Jiao LY, Ning ZH, Hong Q, Peng XH, Yin XM, Liu S, Chen H, Li Z, Sun M, Ma XX. Iridium-catalyzed ortho-selective carbon–hydrogen amidation of benzamides with sulfonyl azides in ionic liquid. RSC Adv 2020; 10:29712-29722. [PMID: 35518216 PMCID: PMC9056170 DOI: 10.1039/d0ra05527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
An efficient and convenient iridium(iii) catalyzed ortho-C–H bond amidation of weakly coordinating benzamides treated with readily available sulfonyl azides as the amino source has been described. In this transformation, ionic liquids represents an ideal reaction medium, giving rise to a broad range of amidation products under mild conditions in the open air. This protocol offers moderate to excellent chemical yields, exclusive regioselectivities, and good functional group tolerance. Ir-catalyzed ortho-C–H amidation of benzamides with sulfonyl azides has been conducted effectively in ionic liquid reaction medium.![]()
Collapse
|
27
|
Cheng Y, Han X, Li J, Zhou Y, Liu H. A removable directing group-assisted Rh(iii)-catalyzed direct C–H bond activation/annulation cascade to synthesize highly fused isoquinolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00786b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A removable directing group-assisted Rh(iii)-catalyzed direct C–H bond activation/annulation cascade was developed to synthesize highly fused isoquinolines with good to excellent yields and a good functional group tolerance.
Collapse
Affiliation(s)
- Yilang Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Xu Han
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Junyou Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
28
|
Hu Y, Wang T, Liu Y, Nie R, Yang N, Wang Q, Li GB, Wu Y. Practical Synthesis of Benzimidazo[1,2- a]quinolines via Rh(III)-Catalyzed C-H Activation Cascade Reaction from Imidamides and Anthranils. Org Lett 2019; 22:501-504. [PMID: 31886675 DOI: 10.1021/acs.orglett.9b04256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a novel and practical one-pot Rh(III)-catalyzed strategy to construct benzimidazo[1,2-a]quinolines from readily available imidamides and anthranils. The cascade reaction proceeds via a C-H amination-cyclization-cyclization process in ionic liquid without any additives and possesses simple operation, moderate-to-high yield, and broad substrate scope features, which will provide the reference for the construction of biologically active fused benzimidazoles.
Collapse
Affiliation(s)
- Yao Hu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ting Wang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Yanzhao Liu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ruifang Nie
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Ninghong Yang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Qiantao Wang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Guo-Bo Li
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Yong Wu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| |
Collapse
|
29
|
Li J, Zhou L, Wang Y, Ma Q, Lei Y, Lai R, Luo Y, Hai L, Wu Y. [Cp*Rh III
] in an Ionic Liquid as a Highly Efficient and Recyclable Catalytic Medium for Regio- and Diastereoselective Csp 3
-H Carbenoid Insertion. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Lin Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yaoling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Qiang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yuan Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; No. 17 Southern Renmin Road Chengdu 610041 Sichuan People's Republic of China
| |
Collapse
|
30
|
Kong X, Xu B. Manganese‐Catalyzed Oxime‐Directed
ortho
‐C−H Amidation in Ionic Liquids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xianqiang Kong
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
31
|
Transformation of aromatic bromides into aromatic nitriles with n-BuLi, pivalonitrile, and iodine under metal cyanide-free conditions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Wang Z, Wang X, Ura Y, Nishihara Y. Nickel-Catalyzed Decarbonylative Cyanation of Acyl Chlorides. Org Lett 2019; 21:6779-6784. [DOI: 10.1021/acs.orglett.9b02398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenhua Wang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Xiu Wang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasuyuki Ura
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Kitauoyanshi-machi, Nara 630-8506, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
33
|
Burate PA, Javle BR, Desale PH, Kinage AK. Amino Acid Amide based Ionic Liquid as an Efficient Organo-Catalyst for Solvent-free Knoevenagel Condensation at Room Temperature. Catal Letters 2019. [DOI: 10.1007/s10562-019-02840-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Yao T, Du K. Temperature-Controlled Mono- and Diolefination of Arene Using Rh(III)/RTIL as an Efficient and Recyclable Catalytic System. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:6068-6077. [DOI: 10.1021/acssuschemeng.8b06262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Tian Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, People’s Republic of China
| |
Collapse
|
35
|
Yang L, Liu YT, Park Y, Park SW, Chang S. Ni-Mediated Generation of “CN” Unit from Formamide and Its Catalysis in the Cyanation Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05111] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, People’s Republic of China
| | - Yu-Ting Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, People’s Republic of China
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Roth R, Schmidt G, Prud’homme A, Abele S. Highly Selective Synthesis of 2-(2 H-1,2,3-Triazol-2-yl)benzoic Acids. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Remo Roth
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH−4123 Allschwil, Switzerland
| | - Gunther Schmidt
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH−4123 Allschwil, Switzerland
| | - Alice Prud’homme
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH−4123 Allschwil, Switzerland
| | - Stefan Abele
- Chemistry Process R&D, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH−4123 Allschwil, Switzerland
| |
Collapse
|
37
|
Nie R, Lai R, Lv S, Xu Y, Guo L, Wang Q, Wu Y. Water-mediated C–H activation of arenes with secure carbene precursors: the reaction and its application. Chem Commun (Camb) 2019; 55:11418-11421. [PMID: 31482875 DOI: 10.1039/c9cc05804d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A water-mediated C–H activation using sulfoxonium ylides is reported, providing a general, green and step-economic approach to construct a C–C bond and varieties of useful N-heterocycle scaffolds.
Collapse
Affiliation(s)
- Ruifang Nie
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Ruizhi Lai
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Songyang Lv
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yingying Xu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Li Guo
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Qiantao Wang
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yong Wu
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
38
|
Guo L, Tang B, Nie R, Liu Y, Lv S, Wang H, Guo L, Hai L, Wu Y. C–H alkenylation/cyclization and sulfamidation of 2-phenylisatogens using N-oxide as a directing group. Chem Commun (Camb) 2019; 55:10623-10626. [PMID: 31429452 DOI: 10.1039/c9cc05719f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ru(ii)-Catalyzed C–H alkenylation/cyclization and Ir(iii)-catalyzed C–H sulfamidation provided indol-3-one derivatives and sulfamidated 2-phenylisatogens respectively, with good yields and excellent functional group tolerance.
Collapse
Affiliation(s)
- Lingmei Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Baolan Tang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Ruifang Nie
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yanzhao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Shan Lv
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Huijing Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California San Diego
- La Jolla
- USA
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|