1
|
Daniel GB, Nachimuthu K, Nallasivam JL. Functionalization of [C 60]-Fullerene: A Recent Update. Chem Asian J 2025; 20:e202401800. [PMID: 39895477 DOI: 10.1002/asia.202401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Functionalization of fullerene has garnered great attention owing to its unique structural, electronic, and photophysical properties. The distinctive properties of fullerene derivatives make them a multifaceted candidate for application in photochemical, biological, nanomaterial, and photophysical studies. The radical scavenging properties of fullerene owe them an important role in reactive oxygen species (ROS) capturing applications. The organic photovoltaic cells are fabricated utilizing functionalized fullerenes due to its electron-accepting properties. The increased prominence of functionalization led to different innovative methodologies to bloom. The present review focuses on various synthetic strategies were adopted for [C60]-annulation reactions to accomplish carbo- and heterocycles fused fullerenes from early 2014 to till date.
Collapse
Affiliation(s)
- Geoffrey Bellson Daniel
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, 620 015, Tamilnadu
| | - Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, 620 015, Tamilnadu
| | - Jothi Lakshmi Nallasivam
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, 620 015, Tamilnadu
| |
Collapse
|
2
|
Chao D, Liu TX, Zhang P, Xia S, Zhang G. Copper-Mediated Radical-Induced Ring-Opening Relay Cascade Carboannulation Reaction of [60]Fullerene with Cyclobutanone Oxime Esters: Access to [60]Fullerene-Fused Cyclopentanes. J Org Chem 2023; 88:13076-13088. [PMID: 37651613 DOI: 10.1021/acs.joc.3c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An unexpected copper-mediated radical-induced ring-opening relay cascade carboannulation reaction of [60]fullerene with cyclobutanone oxime esters is presented for the preparation of various Cl-/Br-incorporated [60]fullerene-fused cyclopentanes. The unique relay cascade transformation uses inexpensive copper salts as promoters and halogen sources and features simple redox-neutral conditions and a broad substrate scope, providing a practical access to a class of novel five-membered carbocycle-fused fullerenes.
Collapse
Affiliation(s)
- Di Chao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
3
|
Shao G, Niu C, Liu HW, Yang H, Chen JS, Yao YR, Yang S, Wang GW. [60]Fullerene-Fused Cyclopentanes: Mechanosynthesis and Photovoltaic Application. Org Lett 2023; 25:1229-1234. [PMID: 36787186 DOI: 10.1021/acs.orglett.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The mechanochemical cascade reaction of [60]fullerene with 3-benzylidene succinimides, diethyl 2-benzylidene succinate, or 2-benzylidene succinonitrile in the presence of an inorganic base has been investigated under solvent-free and ball-milling conditions. This protocol provides an expedient method to afford various [60]fullerene-fused cyclopentanes, showing advantages of good substrate scope, short reaction time, and solvent-free and ambient reaction conditions. Furthermore, representative fullerene products have been applied in inverted planar perovskite solar cells as efficient cathode interlayers.
Collapse
Affiliation(s)
- Gang Shao
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hong-Wei Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Huan Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jun-Shen Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang-Rong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shangfeng Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
4
|
Lóška L, Dočekal V, Císařová I, Veselý J. Stereoselective N-Heterocyclic-Carbene-Catalyzed Formal [4 + 2] Cycloaddition: Access to Chiral Heterocyclic Cyclohexenones. Org Lett 2023; 25:174-178. [PMID: 36595711 DOI: 10.1021/acs.orglett.2c04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present study reports an asymmetric NHC-catalyzed formal [4 + 2] cycloaddition of heterocyclic alkenes containing a polarized double bond with an azolium-dienolate intermediate generated from α-bromo-α,β-unsaturated aldehydes without external oxidation of the Breslow intermediate. Heterocyclic cyclohexenones were produced in good isolated yields (typically about 90%) with good stereochemical outcomes (in most cases, dr > 20/1, and ee = 70-99%). The synthetic utility of the protocol was exemplified by the scope of heterocyclic alkenes.
Collapse
Affiliation(s)
- Ladislav Lóška
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| | - Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 00 Prague 2, Czech Republic
| |
Collapse
|
5
|
Abdel-Galil E, Girges MM, Said GE. Synthesis, Characterization, and Biological Evaluation of Novel Cyclohexenone Derivatives Incorporating Azo, Triazene, and Tetraazene Moieties. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Bhat MUS, Ganie MA, Rizvi MA, Raheem S, Shah BA. Photoredox Catalyzed Thioformylation of Terminal Alkynes Using Nitromethane as a Formyl Source. Org Lett 2022; 24:6658-6663. [PMID: 36047745 DOI: 10.1021/acs.orglett.2c02695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoredox thioformylation of terminal alkynes using nitromethane as a formyl anion equivalent, thereby leading to the synthesis of (E)-1,2-difunctionalized acrylaldehyde, has been described. The current strategy introduces an adaptable aldehyde function across an alkyne and offers a new route to synthesizing α-alkyl/aryl aldehydes.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
7
|
Chen XR, Zhang JX, Zhu SK, Li YW, Yang R, Xuan J, Li F. Transition-Metal-Free Domino Reaction of [60]Fullerene, Indole, and DMSO/HCl: One-Pot Access to Diverse N-Substituted [60]Fulleroindole Derivatives. J Org Chem 2022; 87:7945-7954. [PMID: 35671227 DOI: 10.1021/acs.joc.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented multicomponent domino reaction of [60]fullerene, indole, and DMSO/HCl has been developed for the one-pot efficient synthesis of diverse N-substituted [60]fulleroindole derivatives. This methodology features simple operation, low cost, and transition-metal-circumvented and good functional group tolerance in indole.
Collapse
Affiliation(s)
- Xin-Rui Chen
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun-Xiang Zhang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Shuai-Kang Zhu
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yi-Wen Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Rong Yang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Fei Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
8
|
Liu TX, Zhu X, Xia S, Wang X, Zhang P, Zhang G. NHC-Catalyzed Three-Component Hydroalkylation Reactions of [60]Fullerene: An Umpolung Approach to Diverse Monoalkylated Hydrofullerenes. Org Lett 2022; 24:3691-3695. [PMID: 35576614 DOI: 10.1021/acs.orglett.2c01301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel N-heterocyclic carbene-catalyzed three-component umpolung hydroalkylation of [60]fullerene with 4-(chloromethyl)-benzaldehydes/α,β-unsaturated aldehydes and alcohols/thioalcohols has been developed for the flexible and efficient preparation of diverse monoalkylated hydrofullerenes. Organic catalysis, broad substrate scope, excellent functional group tolerance, and products with high diversity and complexity levels are attractive features of this protocol.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xue Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Lu WQ, Yin ZC, Liu QS, Wang GW. Copper‐Promoted Cascade Radical Reaction of [60]Fullerene with Arylglyoxals and Further Derivatization. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen- Qiang Lu
- University of Science and Technology of China Department of Chemistry 96, Jinzhai Road 230026 Hefei CHINA
| | - Zheng-Chun Yin
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Qing-Song Liu
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Guan-Wu Wang
- University of Science and Techlonogy of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
10
|
Guo L, Wang J, Luo J, Shi Q, Wei D, Chen X. Prediction on chemoselectivity for selected organocatalytic reactions by the DFT version of the Hückel-defined free valence index. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DFT version of the Hückel-defined free valence (HFV) index has been suggested and successfully used for predicting the origin of chemoselectivity in the selected organocatalytic reactions.
Collapse
Affiliation(s)
- Limin Guo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Juanjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
- Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
| | - Jing Luo
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Qianqian Shi
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
- Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| |
Collapse
|
11
|
Niu C, Yin ZC, Wang WF, Huang X, Zhou DB, Wang GW. Retro Baeyer–Villiger reaction: thermal conversion of the [60]fullerene-fused lactones to ketones. Chem Commun (Camb) 2022; 58:3685-3688. [DOI: 10.1039/d2cc00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of the [60]fullerene-fused lactones to ketones with triflic anhydride as an unusual reductant under aerobic conditions has been achieved in excellent yields. The present thermal retro Baeyer–Villiger reaction...
Collapse
|
12
|
Liu TX, Zhang C, Zhang P, Wang X, Ma J, Zhang G. Palladium-catalyzed decarboxylative [2 + 3] cyclocarbonylation reactions of [60]fullerene: selective synthesis of [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new palladium-catalyzed decarboxylative strategy has been developed toward direct cyclocarbonylation of [60]fullerene, selectively furnishing novel [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chuanjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
13
|
Pablo Martínez J, Solà M, Poater A. Predictive Catalysis in Olefin Metathesis with Ru-based Catalysts with Annulated C 60 Fullerenes in the N-heterocyclic Carbenes. Chemistry 2021; 27:18074-18083. [PMID: 34523164 DOI: 10.1002/chem.202100840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 11/09/2022]
Abstract
Predictive catalysis must be the tool that does not replace experiments, but acts as a selective agent, so that synthetic strategies of maximum profitability are used in the laboratory in a surgical way. Here, nanotechnology has been used in olefin metathesis from homogeneous Ru-NHC catalysts, specifically annulating a C60 fullerene to the NHC ligand. Based on results with the C60 in the backbone, a sterile change with respect to the catalysis of the metal center, an attempt has been made to bring C60 closer to the metal, by attaching it to one of the two C-N bonds of the imidazole group of the SIMes (1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) ligand (reference NHC ligand of the 2nd generation Grubbs catalysts) to increase the steric pressure of C60 in the first sphere of reactivity of the metal. The DFT calculated thermodynamics and the kinetics of SIMes-derived systems show that they are efficient catalysts for olefin metathesis.
Collapse
Affiliation(s)
- Juan Pablo Martínez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Catalonia, Girona, Spain
| |
Collapse
|
14
|
Ma J, Liu TX, Zhang P, Zhao X, Zhang G. Metal-Free-Catalyzed Three-Component [2+2+2] Annulation Reaction of [60]Fullerene, Ketones, and Indoles: Access to Diverse [60]Fullerene-Fused 1,2-Tetrahydrocarbazoles. Org Lett 2021; 23:1775-1781. [PMID: 33576632 DOI: 10.1021/acs.orglett.1c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first example of metal-free-catalyzed multicomponent annulation reaction of [60]fullerene has been developed for concise and efficient construction of novel [60]fullerene-fused 1,2-tetrahydrocarbazoles. Using inexpensive and readily available I2 as a catalyst, [60]fullerene, ketones, and indoles undergo a formal [2+2+2] annulation process to conveniently assemble diverse 1,2-tetrahydrocarbazoles. Mechanistic studies indicate that this reaction proceeds through I2-promoted generation of a 3-vinylindole structure with the characteristics of a conjugated diene followed by cycloaddition to [60]fullerene.
Collapse
Affiliation(s)
- Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuna Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Gao J, Feng J, Du D. Generation of azolium dienolates as versatile nucleophilic synthons via N-heterocyclic carbene catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01127h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent advances in N-heterocyclic carbene (NHC)-catalyzed generation of azolium dienolates from different precursors and their synthetic applications for the construction of various valuable molecules are summarized comprehensively in this review.
Collapse
Affiliation(s)
- Jian Gao
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Jie Feng
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| | - Ding Du
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, P. R. China
| |
Collapse
|
16
|
Wu C, Liu TX, Zhang P, Zhu X, Zhang G. Iron-Catalyzed Redox-Neutral Radical Cascade Reaction of [60]Fullerene with γ,δ-Unsaturated Oxime Esters: Preparation of Free (N-H) Pyrrolidino[2',3':1,2]fullerenes. Org Lett 2020; 22:7327-7332. [PMID: 32897079 DOI: 10.1021/acs.orglett.0c02658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein an unprecedented iron(II)-catalyzed redox-neutral radical cascade reaction of [60]fullerene with γ,δ-unsaturated oxime esters is reported for the preparation of novel free (N-H) pyrrolidino[2',3':1,2]fullerenes. The transformation undergoes an intramolecular cyclization/intermolecular cyclization/oxidation/hydrolysis cascade, and features simple operation, broad substrate scope/high functional group compatibility as well as suitable for scale-up synthesis, providing a facile and practical access to a range of free pyrrolidino[2',3':1,2]fullerenes.
Collapse
Affiliation(s)
- Conghui Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xue Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Qiao Y, Xiao Y, Zhao M, Li X, Chang J. Mechanisms and origin of regioselectivity on N-heterocyclic carbene-catalyzed [3+2]/[4+2] annulations of C60 with α,β-unsaturated aldehydes. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Yang Y, Niu C, Chen M, Yang S, Wang GW. Electrochemical regioselective alkylations of a [60]fulleroindoline with bulky alkyl bromides. Org Biomol Chem 2020; 18:4783-4787. [PMID: 32520053 DOI: 10.1039/d0ob00876a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemical alkylations of a [60]fulleroindoline with different bulky alkyl bromides exhibit different reaction behaviors. The hydroalkylation and dialkylation of the electrochemically generated dianionic [60]fulleroindoline with bulky 2,4,6-tris(bromomethyl)mesitylene give rise to 1,2,3,16-adducts. In comparison, the hydroalkylation of the dianionic [60]fulleroindoline with bulkier diphenylbromomethane still affords a 1,2,3,16-adduct, while the corresponding dialkylation provides a sterically favoured 1,4,9,12-adduct, which is scarcely investigated, as the major product along with the isomeric 1,2,3,16-adduct as the minor product. The structures of these products have been determined by spectroscopic data and single-crystal X-ray diffraction analysis. A plausible reaction mechanism has been proposed to explain the formation of the observed products.
Collapse
Affiliation(s)
- Yong Yang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
19
|
Xiao Y, Zhao J, Zhao M, Chong R, Li X, Qiao Y. Mechanism, Chemoselectivity, and Stereoselectivity of NHC‐Catalyzed Asymmetric Desymmetrization of Enal‐Tethered Cyclohexadienones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yang Xiao
- Department of Pathophysiology School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention Zhengzhou University 450001 Zhengzhou Henan China
| | - Jimin Zhao
- Department of Pathophysiology School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention Zhengzhou University 450001 Zhengzhou Henan China
| | - Miao Zhao
- Department of Pathophysiology School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention Zhengzhou University 450001 Zhengzhou Henan China
| | - Ruifeng Chong
- Institute of Environmental and Analytical Sciences College of Chemistry and Chemical Engineering Henan University 475001 Kaifeng China
| | - Xin Li
- Department of Pathophysiology School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention Zhengzhou University 450001 Zhengzhou Henan China
| | - Yan Qiao
- Department of Pathophysiology School of Basic Medical Sciences Zhengzhou University 450001 Zhengzhou Henan China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention Zhengzhou University 450001 Zhengzhou Henan China
| |
Collapse
|
20
|
Niu C, Chen XP, Yin ZC, Wang WF, Wang GW. Alternative Access to Cyclopentafullerenes through the Reaction of [60]Fullerene with Aldehydes and Secondary Amines. J Org Chem 2020; 85:6878-6887. [PMID: 32397711 DOI: 10.1021/acs.joc.9b03436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of cyclopentafullerenes have been synthesized in high stereoselectivity by the thermal reaction of [60]fullerene with aldehydes and secondary amines. Both α,β-unsaturated aldehydes and saturated aldehydes can be utilized to synthesize cyclopentafullerenes as the cis isomers. The possible reaction mechanisms for the formation of cyclopentafullerenes are proposed on the basis of the experimental results.
Collapse
Affiliation(s)
- Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao-Ping Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng-Chun Yin
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
21
|
Wang Y, Lan Y. Mechanism and origin of diastereoselectivity of N-heterocyclic carbene-catalyzed cross-benzoin reaction: A DFT study. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zhang S, Neumann H, Beller M. Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. Chem Soc Rev 2020; 49:3187-3210. [DOI: 10.1039/c9cs00615j] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbonylation reactions represent one of the most important tool box for the synthesis of α,β-unsaturated carbonyl compounds which are key building blocks in organic chemistry. This paper summarizes the most important advances in this field.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | | |
Collapse
|
23
|
Liu Q, Liu TX, Ma J, Zhang G. Palladium-Catalyzed Three-Component Tandem Coupling–Carboannulation Reaction Leading to Polysubstituted [60]Fullerene-Fused Cyclopentanes. Org Lett 2019; 22:284-289. [DOI: 10.1021/acs.orglett.9b04321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingfeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Liu Q, Liu TX, Ru Y, Zhu X, Zhang G. Palladium-catalyzed decarboxylative heterocyclizations of [60]fullerene: preparation of novel vinyl-substituted [60]fullerene-fused tetrahydrofurans/pyrans/quinolines. Chem Commun (Camb) 2019; 55:14498-14501. [PMID: 31729498 DOI: 10.1039/c9cc07950e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A general and practical methodology for the preparation of novel vinyl-substituted [60]fullerene-fused tetrahydrofurans/pyrans/quinolines through palladium-catalyzed decarboxylative heterocyclizations of [60]fullerene with vinylethylene/2-alkylidenetrimethylene carbonates and vinyl carbamates was developed. Without additives or ligands, the Pd(PPh3)4-catalyzed transformations undergo decarboxylative O- and N-heteroannulation processes to efficiently furnish structurally diverse [60]fullerene-fused heterocyclic derivatives.
Collapse
Affiliation(s)
- Qingfeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | |
Collapse
|
25
|
Li D, Li ZJ, He FG, Geng C, Gao X. Synthesizing 1,23-C60 Adducts with Improved Efficiency: A Type of Stable and Highly Soluble C60 Derivatives. J Org Chem 2019; 84:14679-14687. [DOI: 10.1021/acs.joc.9b02272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zong-Jun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Fa-Gui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Chao Geng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Xiang Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
26
|
Hussain M, Chen M, Yang S, Wang GW. Palladium-Catalyzed Heteroannulation of Indole-1-carboxamides with [60]Fullerene and Subsequent Electrochemical Transformations. Org Lett 2019; 21:8568-8571. [DOI: 10.1021/acs.orglett.9b03112] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Majid Hussain
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
27
|
Niu C, Li B, Yin ZC, Yang S, Wang GW. Electrochemical Benzylation of [60]Fullerene-Fused Lactones: Unexpected Formation of Ring-Opened Adducts and Their Photovoltaic Performance. Org Lett 2019; 21:7346-7350. [DOI: 10.1021/acs.orglett.9b02635] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Bairu Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Zheng-Chun Yin
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
28
|
Liu TX, Wei J, Zhang P, Ru Y, Ma J, Zhang X, Ma N, Zhang G. Copper-Catalyzed N-H/C-H Sequential Relay Oxidative Radical Carboannulation: Construction of Diversely Substituted [60]Fullerene-Fused Tetrahydrocyclopenta[ b]indoles. Org Lett 2019; 21:6461-6465. [PMID: 31373207 DOI: 10.1021/acs.orglett.9b02354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Reported herein is a new copper-catalyzed N-H/C-H sequential relay oxidative radical carboannulation of [60]fullerene with C2-functionalized free indoles for the direct construction of novel [60]fullerene-fused tetrahydrocyclopenta[b]indoles. The transformation shows high regioselectivity and atom economy, broad substrate scope, and good functional group tolerance, providing an efficient and practical approach to access diversely substituted fullerene-fused polycyclic derivatives from simple hydrocarbons.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Juan Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Yifei Ru
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Xingjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
29
|
Liu Q, Liu TX, Ma N, Tu C, Wang R, Zhang G. Cu(II)/Mn(III)-Promoted Synergistic Radical N-Heteroannulation Reaction: Synthesis of [60]Fullerene-Fused Tetrahydroquinoline Derivatives. J Org Chem 2019; 84:7255-7264. [DOI: 10.1021/acs.joc.9b00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Qingfeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenhao Tu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ruoya Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
30
|
Liu YJ, Ge J, Miao CB, Yang HT. Copper-Catalyzed Reaction of C60 with Tertiary Amines for the Preparation of Spiro-Linked Methanofullerenes and Fullerenoalkanals. J Org Chem 2019; 84:6134-6142. [DOI: 10.1021/acs.joc.9b00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yong-Jian Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Ge
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
31
|
Zhang S, Neumann H, Beller M. Pd-Catalyzed Carbonylation of Vinyl Triflates To Afford α,β-Unsaturated Aldehydes, Esters, and Amides under Mild Conditions. Org Lett 2019; 21:3528-3532. [DOI: 10.1021/acs.orglett.9b00765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Rostock 18059, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Rostock 18059, Germany
| |
Collapse
|
32
|
Niu C, Zhou DB, Yang Y, Yin ZC, Wang GW. A retro Baeyer-Villiger reaction: electrochemical reduction of [60]fullerene-fused lactones to [60]fullerene-fused ketones. Chem Sci 2019; 10:3012-3017. [PMID: 30996881 PMCID: PMC6427942 DOI: 10.1039/c8sc05089a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
An unprecedented retro Baeyer–Villiger reaction has been achieved by the electrochemical reduction of [60]fullerene-fused lactones in the presence of acetic acid at room temperature, affording [60]fullerene-fused ketones in excellent yields within a short time.
A highly efficient electrochemical reduction of [60]fullerene-fused lactones to [60]fullerene-fused ketones, a formal process of retro Baeyer–Villiger reaction, has been achieved for the first time. The electrochemically generated dianionic [60]fullerene-fused lactones can be transformed into [60]fullerene-fused ketones in the presence of acetic acid in 85–91% yields. Control experiments have been performed to elucidate the reaction mechanism. The products have been characterized with spectroscopic data and single-crystal X-ray analysis. Moreover, the electrochemical properties have also been investigated.
Collapse
Affiliation(s)
- Chuang Niu
- Hefei National Laboratory for Physical Sciences at Microscale , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , Center for Excellence in Molecular Synthesis of CAS , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Dian-Bing Zhou
- Hefei National Laboratory for Physical Sciences at Microscale , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , Center for Excellence in Molecular Synthesis of CAS , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Yong Yang
- Hefei National Laboratory for Physical Sciences at Microscale , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , Center for Excellence in Molecular Synthesis of CAS , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Zheng-Chun Yin
- Hefei National Laboratory for Physical Sciences at Microscale , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , Center for Excellence in Molecular Synthesis of CAS , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Guan-Wu Wang
- Hefei National Laboratory for Physical Sciences at Microscale , CAS Key Laboratory of Soft Matter Chemistry , iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) , Center for Excellence in Molecular Synthesis of CAS , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China . .,State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , P. R. China
| |
Collapse
|
33
|
Teng Q, Tan YC, Miao CB, Sun XQ, Yang HT. Tunable Copper-Catalyzed Reaction of C60 with 2-Ethoxycarbonylacetamides and Subsequent BF3·Et2O-Mediated Isomerization of the Generated Dihydrofuran-Fused Fullerenes to Fulleropyrrolidinones. J Org Chem 2018; 83:15268-15276. [DOI: 10.1021/acs.joc.8b02547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Qiaoqiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yi-Chen Tan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiao-Qiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
34
|
Liu TX, Yue S, Wei C, Ma N, Zhang P, Liu Q, Zhang G. Solvent-promoted catalyst-free regioselective N-incorporation multicomponent domino reaction: rapid assembly of π-functionalized [60]fullerene-fused dihydrocarbolines. Chem Commun (Camb) 2018; 54:13331-13334. [DOI: 10.1039/c8cc07580h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An unprecedented solvent-promoted N-incorporation multicomponent domino chemistry was developed for the direct construction of π-functionalized [60]fullerene-fused dihydrocarbolines from simple hydrocarbons.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Shuaishuai Yue
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Changgeng Wei
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Nana Ma
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Pengling Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Qingfeng Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| | - Guisheng Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
| |
Collapse
|