1
|
Li X, Yan R, Tan M, Kwok RTK, Sun J, Xiang H, Ma X, Lam JWY, Tang BZ. Facile Access to Piezoelectric Polyamides by Polyamidation of Carboxylic Acids and Ynamides for Potent Tumor Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202424923. [PMID: 40088012 DOI: 10.1002/anie.202424923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/17/2025]
Abstract
Polyamides are a fascinating group of piezoelectric materials that are largely synthesized by the polycondesation of dicarboxylic acids with diamines or the ring-opening polymerization of special lactams. However, developing a green polymerization approach for the facile synthesis of piezoelectric polyamides is highly desirable but also challenging. Here, a simple polyamidation of carboxylic acids and ynamides is successfully established to synthesize versatile piezoelectric polyamides. This polymerization also possesses the merits of 100% atom economy, no waste generation, and additive-free as well as catalyst-free system. A range of polyamides are synthesized in moderate to good yields with satisfactory molecular weights. Importantly, piezoelectric polyamides containing tetraphenylethene (P1e/2b) can generate a bundant reactive oxygen species under ultrasound (US) exposure, thereby eliciting robust immunogenic cell death induction for augmented piezoelectric immunotherapy. Furthermore, P1e/2b exhibits distinctive aggregation-induced emission property that allows fluorescence imaging. In vivo evaluation using a bilateral tumor-bearing mouse model manifested that P1e/2b administration reinforced systemic immunity and triggered immune memory under US exposure, thereby leading to primary tumor eradication and distant tumor suppression. Therefore, this work represents a transition-metal-free and waste-free polymerization paradigm for the construction of piezoelectric polyamides, providing a distinct strategy to designing new piezoelectric polymers for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, China
| | - Ruiqi Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Mei Tan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, China
| | - Jianwei Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiang Ma
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 997077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
2
|
Galibert-Guijarro A, Tronc J, Mouysset D, Siri D, Gastaldi S, Bertrand MP, Feray L. Investigation of UV Light-Promoted Synthesis of α-Sulfonyl Amides from N-Sulfonyl Ynamides. J Org Chem 2024; 89:9695-9699. [PMID: 38965935 DOI: 10.1021/acs.joc.4c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
UV light-promoted synthesis of α-sulfonyl amides from N-sulfonyl ynamides without any additives is reported. The reaction proceeds through a radical chain mechanism involving the photoinduced cleavage of the nitrogen-sulfur bond and addition of an electrophilic sulfonyl radical to the triple bond of the ynamide followed by β-fragmentation of the sulfonyl group leading to a ketenimine hydrated upon workup. This highly efficient rearrangement leads, after acidic treatment, to a wide range of α-sulfonyl amides in high yields.
Collapse
Affiliation(s)
| | - Jérémy Tronc
- Aix Marseille Univ, CNRS, ICR, Marseille, 13013, France
| | | | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, Marseille, 13013, France
| | | | | | | |
Collapse
|
3
|
Hu L, Zhao J. Ynamide Coupling Reagents: Origin and Advances. Acc Chem Res 2024; 57:855-869. [PMID: 38452397 PMCID: PMC10956395 DOI: 10.1021/acs.accounts.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Since the pioneering work of Curtius and Fischer, chemical peptide synthesis has witnessed a century's development and evolved into a routine technology. However, it is far from perfect. In particular, it is challenged by sustainable development because the state-of-the-art of peptide synthesis heavily relies on legacy reagents and technologies developed before the establishment of green chemistry. Over the past three decades, a broad range of efforts have been made for greening peptide synthesis, among which peptide synthesis using unprotected amino acid represents an ideal and promising strategy because it does not require protection and deprotection steps. Unfortunately, C → N peptide synthesis employing unprotected amino acids has been plagued by undesired polymerization, while N → C inverse peptide synthesis with unprotected amino acids is retarded by severe racemization/epimerization owing to the iterative activation and aminolysis of high racemization/epimerization susceptible peptidyl acids. Consequently, there is an urgent need to develop innovative coupling reagents and strategies with novel mechanisms that can address the long-standing notorious racemization/epimerization issue of peptide synthesis.This Account will describe our efforts in discovery of ynamide coupling reagents and their application in greening peptide synthesis. Over an eight-year journey, ynamide coupling reagents have evolved into a class of general coupling reagents for both amide and ester bond formation. In particular, the superiority of ynamide coupling reagents in suppressing racemization/epimerization enabled them to be effective for peptide fragment condensation, and head-to-tail cyclization, as well as precise incorporation of thioamide substitutions into peptide backbones. The first practical inverse peptide synthesis using unprotected amino acids was successfully accomplished by harnessing such features and taking advantage of a transient protection strategy. Ynamide coupling reagent-mediated ester bond formation enabled efficient intermolecular esterification and macrolactonization with preservation of α-chirality and the configuration of the conjugated α,β-C-C double bond. To make ynamide coupling reagents readily available with reasonable cost and convenience, we have developed a scalable one-step synthetic method from cheap starting materials. Furthermore, a water-removable ynamide coupling reagent was developed, offering a column-free purification of the target coupling product. In addition, the recycle of ynamide coupling reagent was accomplished, thereby paving the way for their sustainable industrial application.As such, this Account presents the whole story of the origin, mechanistic insights, preparation, synthetic applications, and recycle of ynamide coupling reagents with a perspective that highlights their future impact on peptide synthesis.
Collapse
Affiliation(s)
- Long Hu
- Affiliated Cancer Hospital, Guangdong
Provincial Key Laboratory of Major Obstetric Diseases, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junfeng Zhao
- Affiliated Cancer Hospital, Guangdong
Provincial Key Laboratory of Major Obstetric Diseases, School of Pharmaceutical
Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
4
|
Sivaraj C, Gandhi T. Solvent-controlled amidation of acid chlorides at room temperature: new route to access aromatic primary amides and imides amenable for late-stage functionalization †. RSC Adv 2023; 13:9231-9236. [PMID: 36959886 PMCID: PMC10028618 DOI: 10.1039/d3ra00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature. A unique feature of this method lies in the sequential silyl amidation of aryol chlorides and nitrogen–silicon bond cleavage of the corresponding N,N-bis(trimethylsilyl)benzamide in a one-pot method in a very short reaction time. This effective strategy was extended to late-stage functionalization. Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature.![]()
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| |
Collapse
|
5
|
Yang S, Liu C, Shangguan X, Li Y, Zhang Q. A copper-catalyzed four-component reaction of arylcyclopropanes, nitriles, carboxylic acids and N-fluorobenzenesulfonimide: facile synthesis of imide derivatives. Chem Sci 2022; 13:13117-13121. [PMID: 36425490 PMCID: PMC9667929 DOI: 10.1039/d2sc04913a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/26/2022] [Indexed: 07/21/2023] Open
Abstract
An unprecedented copper-catalyzed four-component reaction of arylcyclopropanes, nitriles, carboxylic acids and N-fluorobenzenesulfonimide (NFSI) has been successfully developed, which represents the first example of a four-component reaction of non-donor-acceptor cyclopropanes. A wide range of imide derivatives were efficiently synthesized in excellent yields under mild conditions.
Collapse
Affiliation(s)
- Shengbiao Yang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province 274000 China
| | - Chunyang Liu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xiaoyan Shangguan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Yan Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
6
|
Kanikarapu S, Gogoi MP, Dutta S, Sahoo AK. A 6- endo-dig Thiolative Cyclization of Yne-Ynamides: Access to Thiodihydropyridin-2-ones. Org Lett 2022; 24:8289-8294. [DOI: 10.1021/acs.orglett.2c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Suresh Kanikarapu
- School of Chemistry, University of Hyderabad, Hyderabad, India 500046
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad, India 500046
| | - Akhila K. Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, India 500046
| |
Collapse
|
7
|
Li W, Zheng Y, Qu E, Bai J, Deng Q. β
‐Keto Amides: A Jack‐of‐All‐Trades Building Block in Organic Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Yan Zheng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Erdong Qu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Jin Bai
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Qinyue Deng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|
8
|
Zeng L, Jin J, He J, Cui S. Photo-induced synthesis of β-sulfonyl imides from carboxylic acids. Chem Commun (Camb) 2021; 57:6792-6795. [PMID: 34137749 DOI: 10.1039/d1cc02559g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A photo-induced imidation process of carboxylic acids is described. Numerous carboxylic acids could convert to β-sulfonyl imides in the presence of N-sulfonyl ynamides under visible light irradiation. Control experiments and mechanistic studies demonstrate that this imidation process involves a hydroacyloxylation/radical rearrangement cascade. This protocol represents a direct imidation method from carboxylic acids under mild conditions, with broad scope and high atom-economy.
Collapse
Affiliation(s)
- Linwei Zeng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jixiao He
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
9
|
Zhao L, Yang H, Li R, Tao Y, Guo XF, Anderson EA, Whiting A, Wu N. Synthesis of Sulfonamide-Based Ynamides and Ynamines in Water. J Org Chem 2021; 86:1938-1947. [PMID: 33356269 DOI: 10.1021/acs.joc.0c02326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ynamides, though relatively more stable than ynamines, are still moisture-sensitive and prone to hydration especially under acidic and heating conditions. Here we report an environmentally benign, robust protocol to synthesize sulfonamide-based ynamides and arylynamines via Sonogashira coupling reactions in water, using a readily available quaternary ammonium salt as the surfactant.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hongyi Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ruikun Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ye Tao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xiao-Feng Guo
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Andrew Whiting
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Na Wu
- School of Chemistry and Bioscience, University of Bradford, Bradford, West Yorkshire BD7 1DP, U.K
| |
Collapse
|
10
|
Flynn AJ, Ford A, Maguire AR. Synthetic and mechanistic aspects of sulfonyl migrations. Org Biomol Chem 2020; 18:2549-2610. [DOI: 10.1039/c9ob02587a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfonyl migrations, frequently described as ‘unusual’ or ‘unexpected’, from the last 20 years, including 1,2-, 1,3-, 1,4-, 1,5-, 1,6- and 1,7-sulfonyl shifts, through either radical or polar processes, either inter- or intramolecularly are reviewed.
Collapse
Affiliation(s)
- Aaran J. Flynn
- School of Chemistry
- Analytical and Biological Research Facility
- Synthesis and Solid State Pharmaceutical Centre
- University College Cork
- Cork
| | - Alan Ford
- School of Chemistry
- Analytical and Biological Research Facility
- University College Cork
- Cork
- Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy
- Analytical and Biological Research Facility
- Synthesis and Solid State Pharmaceutical Centre
- University College Cork
- Cork
| |
Collapse
|
11
|
Zeng L, Sajiki H, Cui S. One-Pot Reaction of Carboxylic Acids, Ynol Ethers, and m-CPBA for Synthesis of α-Carbonyloxy Esters. Org Lett 2019; 21:6423-6426. [PMID: 31343885 DOI: 10.1021/acs.orglett.9b02323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel one-pot reaction of carboxylic acids, ynol ethers, and m-CPBA for the synthesis of α-carbonyloxy esters in the presence of Ag2O is described. This process provides a direct approach to α-carbonyloxy esters with the achievement of formation of three C-O bonds. The protocol is featured with readily available starting materials and broad substrate scope. Control reactions and isotope-labeling reactions were conducted to elucidate a plausible mechanism.
Collapse
Affiliation(s)
- Linwei Zeng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Hironao Sajiki
- Laboratory of Organic Chemistry , Gifu Pharmaceutical University , Gifu 501-1196 , Japan
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
12
|
Liu J, Chakraborty P, Zhang H, Zhong L, Wang ZX, Huang X. Gold-Catalyzed Atom-Economic Synthesis of Sulfone-Containing Pyrrolo[2,1-a]isoquinolines from Diynamides: Evidence for Consecutive Sulfonyl Migration. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04934] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jibing Liu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pushkin Chakraborty
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Heng Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhong
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|