1
|
Zhang T, An X, Cui G, Ma H, He X, Wang M. Catalyst-Free Selective Synthesis of E-Tetrasubstituted Olefins via Tandem Reaction of 3-Acetyl-4-phenyl-1-oxaspiro[4.5]deca-3,6,9-triene-2,8-dione with Amine, C-C Bond Breakage, and Proton Transfer. J Org Chem 2025; 90:3322-3333. [PMID: 39996461 DOI: 10.1021/acs.joc.4c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The Z- or E-selective syntheses of tetrasubstituted olefins present big challenges. Tremendous efforts are ongoing to overcome this issue, especially for acyclic structures. In this work, an E-stereoselective synthetic method of tetrasubstituted olefins through tandem reaction of 1,4-Michael addition of 3-acetyl-4-phenyl-1-oxaspiro[4.5]deca-3,6,9-triene-2,8-dione with amine, C-C bond breakage, and proton transfer by intermolecular hydrogen bonds was revealed with excellent atom economy and without catalysts and additives. A diverse set of E-tetrasubstituted olefins were obtained in 43% to 93% yields with excellent functional group tolerance for late-stage modifications of complex drug molecules. The reaction mechanism was proposed based on the deuterium-labeling experiment and density functional theory (DFT) calculation.
Collapse
Affiliation(s)
- Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinkun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Guoen Cui
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xie He
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Wang MD, Li YN, Xiao LX, Zhang RH, Yuan M, Wang ZL, Zhang XG, Tu HY. Ni-Catalyzed Reductive Fluoroalkylthiolation of Alkynes toward Fluoroalkylated Vinylthioethers. Org Lett 2025; 27:391-395. [PMID: 39742436 DOI: 10.1021/acs.orglett.4c04434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A Ni-catalyzed protocol for the regioselective and stereoselective three-component fluoroalkylthiolation of alkynes with fluoroalkyl halides and thiosulfonates is presented. This reductive difunctionalization provides an efficient strategy for the rapid construction of fluoroalkyl-incorporated vinylthioethers under mild conditions in moderate to good yields.
Collapse
Affiliation(s)
- Meng-Dan Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ya-Nan Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lin-Xi Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Run-Han Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Meng Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhao-Lun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
3
|
Hong Y, Qiu J, Wu Z, Xu S, Zheng H, Zhu G. Tetrafluoroisopropylation of alkenes and alkynes enabled by photocatalytic consecutive difluoromethylation with CF 2HSO 2Na. Nat Commun 2024; 15:5685. [PMID: 38971849 PMCID: PMC11227567 DOI: 10.1038/s41467-024-50081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Direct assembly of complex fluorinated motifs from simple fluorine sources is an attractive frontier of synthetic chemistry. Reported herein is an unconventional protocol for achieving tetrafluoroisopropylation by using commercially available CF2HSO2Na as a convenient source of the tetrafluoroisopropyl [(CF2H)2CH] group, which finds widespread applications in life science and material science. Visible-light-induced hydrotetrafluoroisopropylation of alkenes and carbotetrafluoroisopropylation of alkynes have been thus developed. Various structurally diverse α-tetrafluoroisopropyl carbonyls and cyclopentanones are selectively constructed under mild conditions. A photocatalytic triple difluoromethylation cascade, driven by consecutive reductive radical/polar crossover processes, leads to the direct assembly of a tetrafluoroisopropyl moiety from CF2HSO2Na. This C1-to-C3 fluoroalkylation protocol provides a practical strategy for the rapid construction of polyfluorinated compounds that are otherwise difficult to access, thus significantly enhancing the boundary of fluoroalkylation chemistry.
Collapse
Affiliation(s)
- Yuwei Hong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Sangxuan Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China.
| |
Collapse
|
4
|
Zeng Q, Nirwan Y, Benet-Buchholz J, Kleij AW. An Expedient Radical Approach for the Decarboxylative Synthesis of Stereodefined All-Carbon Tetrasubstituted Olefins. Angew Chem Int Ed Engl 2024; 63:e202403651. [PMID: 38619179 DOI: 10.1002/anie.202403651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
We report a user-friendly approach for the decarboxylative formation of stereodefined and complex tri- and tetra-substituted olefins from vinyl cyclic carbonates and amines as radical precursors. The protocol relies on easy photo-initiated α-amino-radical formation followed by addition onto the double bond of the substrate resulting in a sequence involving carbonate ring-opening, double bond relay, CO2 extrusion and finally O-protonation. The developed protocol is efficient for both mismatched and matched polarity substrate combinations, and the scope of elaborate stereodefined olefins that can be forged including drug-functionalized derivatives is wide, diverse and further extendable to other types of heterocyclic and radical precursors. Mechanistic control reactions show that the decarboxylation step is a key driving force towards product formation, with the initial radical addition under steric control.
Collapse
Affiliation(s)
- Qian Zeng
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
- Departament de Química Física i Inorgànica/Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Yamini Nirwan
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís, Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
5
|
Hu X, Wang Y, Xu S, Wu J, Wu F. Visible Light-Induced Copper-Catalyzed Regio- and Stereoselective Difluoroalkylthiocyanation of Alkynes. J Org Chem 2024; 89:9118-9124. [PMID: 38842393 DOI: 10.1021/acs.joc.4c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The first regio- and stereoselective difluoroalkylthiocyanation of alkynes with BrCF2R and KSCN has been disclosed under visible light-induced copper catalysis. The copper complex photosensitizer formed in situ not only promotes the generation of CF2-alkyl radicals but also facilitates the construction of C-SCN bonds, allowing the reaction to proceed smoothly without any additional photocatalysts or radical initiators. Moreover, the challenging internal alkynes can also be transformed to deliver CF2-derived tetrasubstituted olefins with potential applications in agricultural and medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoxue Hu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yanzhao Wang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shibo Xu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
6
|
Fan Z, Ye M, Wang Y, Qiu J, Li W, Ma X, Yang K, Song Q. Enantioselective Copper-Catalyzed sp 2/sp 3 Diborylation of 1-Chloro-1-Trifluoromethylalkenes. ACS CENTRAL SCIENCE 2022; 8:1134-1144. [PMID: 36032759 PMCID: PMC9413839 DOI: 10.1021/acscentsci.2c00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 05/03/2023]
Abstract
Fluorine-containing organoboron compounds have emerged as novel building blocks in chemical synthesis; among them, fluorinated sp2/sp3 diborylated compounds are particularly appealing, since they might undergo chemoselective and diversified transformations of different C-B bonds with fluorinated functionality, thus bringing versatility and complexity to the eventual products. However, expedient, synthetic strategies for the construction of such fluorinated diborylative compounds are very sparse. Herein, we disclose enantioselective Cu-catalyzed sp2/sp3 diborylations of 1-chloro-1-trifluoromethylalkenes, leading to diborylated compounds bearing a gem-difluoroalkenyl moiety; most intriguingly, the new formed C-B bonds include one stereoselective and optically pure Csp3-B bond. Further transformations on the eventual products demonstrated the values of our presented strategy.
Collapse
Affiliation(s)
- Zhenwei Fan
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Mingxing Ye
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Yahao Wang
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Jian Qiu
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Wangyang Li
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Kai Yang
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Material Sciences
Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
8
|
Li D, Yang J, Wu J, Wang C, Wang Z, Li H, Liu R, Wang Y, Zhou P. Base/B2pin2-Mediated Iodofluoroalkylation of Alkynes and Alkenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1747-5457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractA base/B2pin2-mediated iodofluoroalkylation of alkynes and a part of alkenes, using ethyl difluoroiodoacetate (ICF2CO2Et) or ICnF2n+1 (n = 3, 4, 6) as difluoroacetylating or perfluoroalkylating reagent, is disclosed. The reaction proceeds under mild conditions, and iododifluoroalkylation, hydrodifluoroalkylation and several perfluoroalkylation products were generated from alkynes or alkenes. Notably, this methodology provides a simple access to difluoroalkylated and perfluoroalkylated organic compounds starting from simple alkynes or alkenes.
Collapse
|
9
|
Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat Commun 2022; 13:1784. [PMID: 35379818 PMCID: PMC8980057 DOI: 10.1038/s41467-022-29466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Tetracoordinate boron species have emerged as radical precursors via deboronation by photo-induced single electron transfer (SET) pathway. These reactions usually produce an alkyl radical and boron-bound species, and the valuable boron species are always discarded as a by-product. Given the importance of boron species, it will be very attractive if the two parts could be incorporated into the eventual products. Herein we report a photo-catalyzed strategy in which in situ generated tetracoordinated boron species decomposed into both alkyl radicals and boron species under visible light irradiation, due to the pre-installation of a vinyl group on the aromatic ring, the newly generated alkyl radical attacks the vinyl group while leaving the boron species on ipso-position, then both radical part and boron moiety are safely incorporated into the final product. Tertiary borons, secondary borons, gem-diborons as well as 1,2-diborons, and versatile electrophiles are all well tolerated under this transformation, of note, ortho-, meta- and para-bromostyrenes all demonstrated good capabilities. The reaction portraits high atom economy, broad substrate scope, and diversified valuable products with tertiary or quaternary carbon center generated, with diborons as substrates, Csp2-B and Csp3-B are established simultaneously, which are precious synthetic building blocks in chemical synthesis. Tetracoordinate boron species are common radical precursors in organic synthesis, but the boron species are discarded as by-products. Herein the authors report a strategy to incorporate both the alkyl moiety and boron species into the eventual products, yielding organoboron compounds.
Collapse
|
10
|
Ma X, Kuang Z, Song Q. Recent Advances in the Construction of Fluorinated Organoboron Compounds. JACS AU 2022; 2:261-279. [PMID: 35252978 PMCID: PMC8889561 DOI: 10.1021/jacsau.1c00129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Fluorinated organoboron compounds are important synthetic building blocks that combine the unique characteristics of a fluorinated motif with the versatile synthetic applications of organoboron moiety. This review article guides the research on fluorinated organoboron compounds mainly from four aspects in recent years: selective monodefluoroborylation of polyfluoroarenes and polyfluoroalkenes, selective borylation of fluorinated substrates, selective fluorination of organoboron compounds, and borofluorination of alkynes/olefins. In addition, this review will provide a necessary guidance and inspiration for the research on the valuable synthetic building block fluorinated organoboron compounds.
Collapse
Affiliation(s)
- Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Zhijie Kuang
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
11
|
Le S, Bai Y, Qiu J, Zhang Z, Zheng H, Zhu G. Access to cyclopentenones via copper-catalyzed 5- endo trifluoromethylcarbocyclization of ynones. Org Chem Front 2022. [DOI: 10.1039/d2qo00843b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A copper-catalyzed 5-endo-selective trifluoromethylcarbocyclization of ynones is realized for the direct construction of trifluoromethylated cyclopentenones.
Collapse
Affiliation(s)
- Siya Le
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yihui Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
12
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Regioselective 2-alkylation of indoles with α-bromo esters catalyzed by Pd/P,P=O system. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Gatlik B, Chaładaj W. Pd-Catalyzed Perfluoroalkylative Aryloxycarbonylation of Alkynes with Formates as CO Surrogates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beata Gatlik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
15
|
Buttard F, Sharma J, Champagne PA. Recent advances in the stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Chem Commun (Camb) 2021; 57:4071-4088. [PMID: 33908457 DOI: 10.1039/d1cc00596k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkenes bearing four carbon-based groups are ubiquitous motifs in chemical sciences due to their various applications from medicinal to materials chemistry, and as chemical platforms for the synthesis of complex, chiral molecules. As such, tremendous research efforts are currently ongoing in order to develop general procedures for the challenging stereoselective synthesis of all-carbon tetrasubstituted alkenes, especially for acyclic structures. Since classical approaches to carbon-carbon double bonds are not suitable for the high steric demand around tetrasubstituted alkenes, a variety of unique approaches to access these privileged functional groups have been developed in recent years. This review article highlights the most significant developments in the field from 2007 to 2020, with an emphasis on the mechanisms and remaining limitations of these contemporary methods. Specifically, recent advances in internal alkyne carbofunctionalizations, in multicomponent couplings or other cross-couplings from nucleophilic or electrophilic alkenyl partners, and in the development of miscellaneous methods, are discussed.
Collapse
Affiliation(s)
- Floris Buttard
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark (NJ), USA.
| | - Jyoti Sharma
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark (NJ), USA.
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark (NJ), USA.
| |
Collapse
|
16
|
Suliman AMY, Ahmed EAMA, Gong TJ, Fu Y. Cu/Pd-Catalyzed cis-Borylfluoroallylation of Alkynes for the Synthesis of Boryl-Substituted Monofluoroalkenes. Org Lett 2021; 23:3259-3263. [PMID: 33872017 DOI: 10.1021/acs.orglett.1c00668] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monofluoroalkenes normally act as metabolically stable bioisosteres for amide groups (-NH-CO-) and have widespread applications in drug discovery. Additionally, they are widely used as building blocks in organic synthesis. In this study, the Cu/Pd-catalyzed cis-borylfluoroallylation of alkynes was achieved, providing a modular and general tactic for the preparation of monofluorinated alkene scaffolds with high regioselectivity and stereoselectivity. Moreover, an array of synthetic building blocks can be generated by downstream transformations.
Collapse
Affiliation(s)
- Ayman M Y Suliman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Ebrahim-Alkhalil M A Ahmed
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
17
|
Cobalt-catalyzed synthesis of bromomonofluoroallyl ketones by addition of alkynes and α-bromo-α-fluoroketones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Sun X, Dong X, Liu H, Liu Y. Recent Progress in Palladium‐Catalyzed Radical Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xi Sun
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Xu Dong
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Hui Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Yuying Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| |
Collapse
|
19
|
Wu P, Zheng C, Wang X, Wu J, Wu F. Copper‐Catalyzed Three‐Component Reactions of 2‐Iodo‐2,2‐difluoroacetophenones, Alkynes, and Trimethylsilyl Cyanide. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pingjie Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Cheng Zheng
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Xia Wang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 200032 Shanghai P. R. China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
20
|
Zhou G, Su J, Shang T, Wang X, Bai Y, Yuan Z, Zhu G. Synthesis of polysubstituted azetidines via cascade trifluoromethylation/cyclization of N-allyl ynamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00559f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cascade trifluoromethylation/cyclization of N-allyl sulfonylynamides is developed, providing a direct access to azetidine-fused tricyclic compounds at room temperature.
Collapse
Affiliation(s)
- Genlai Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Jingwen Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Tianbo Shang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Xiaojuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Yihui Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| |
Collapse
|
21
|
Li XR, Li WX, Zhang ZW, Shen C, Zhou X, Chu XQ, Rao W, Shen ZL. Stereoselective synthesis of fluoroalkylated ( Z)-alkene via nickel-catalyzed and iron-mediated hydrofluoroalkylation of alkynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00983d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient nickel-catalyzed, iron-mediated hydrofluoroalkylation of alkynes with bromodifluoroacetate or perfluoroalkyl iodide, which proceeded smoothly to give fluoroalkylated (Z)-alkenes with high stereocontrol (up to 99 : 1 Z/E), was developed.
Collapse
Affiliation(s)
- Xiang-Rui Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Xin Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuo-Wen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
22
|
Shu C, Feng J, Zheng H, Cheng C, Yuan Z, Zhang Z, Xue XS, Zhu G. Internal Alkyne-Directed Fluorination of Unactivated C(sp 3)-H Bonds. Org Lett 2020; 22:9398-9403. [PMID: 33226830 DOI: 10.1021/acs.orglett.0c03730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A silver-mediated internal alkyne-guided fluorination of unactivated C(sp3)-H bonds is described. The reaction provides a facile access to γ-fluorinated fluoroalkylated (Z)-alkenes from readily available alkynes in promising yields with excellent regioselectivity, stereoselectivity, and site selectivity.
Collapse
Affiliation(s)
- Chenyun Shu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Jian Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Hanliang Zheng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Cungui Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
23
|
Zuo HD, Cui CC, Guo C, Hao WJ, Tu SJ, Jiang B. Metal-Catalyzed Spiroannulation-Fluoromethylfunctionaliztions of 1,5-Enynes for the Synthesis of Stereodefined (Z)-Spiroindenes. Chem Asian J 2020; 15:4070-4076. [PMID: 33016006 DOI: 10.1002/asia.202000954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Two classes of new catalytic spiroannulation-fluormethylfunctionaliztions of para-quinone methide (p-QM)-containing 1,5-enynes have been established under redox-neutral conditions. Palladium-catalyzed spiroannulation-iododifluoromethylation with ethyl difluoroiodoacetate oriented completely stereoselective access to (Z)-spiroindenes and the latter included copper-catalyzed three-component spiroannulation-cyanotrifluoromethylation starting from Togni's reagent and trimethylsilanecarbonitrile (TMSCN). Both reaction pathways involve fluoroalkyl radical-triggered 1,6-addition/5-exo-dig annulation/metal radical cross-coupling/reductive elimination sequence, providing practical and stereoselective protocols for rapidly constructing cyclohexadienone-containing spiroindenes with generally good yields.
Collapse
Affiliation(s)
- Hang-Dong Zuo
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.,School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Chen-Chang Cui
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Cheng Guo
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
24
|
Construction of Boronated
γ
‐Lactams via Palladium‐Catalyzed Intramolecular Boryldifluoroalkylation of Alkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Kuang Z, Chen H, Qiu J, Ou Z, Lan Y, Song Q. Cu-Catalyzed Regio- and Stereodivergent Chemoselective sp/sp 1,3- and 1,4-Diborylations of CF3-Containing 1,3-Enynes. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Ma JW, Chen X, Zhou ZZ, Liang YM. Visible-Light-Induced Palladium-Catalyzed Carbocyclization of Unactivated Alkyl Bromides with Alkenes Involving C–I or C–B Coupling. J Org Chem 2020; 85:9301-9312. [DOI: 10.1021/acs.joc.0c00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun-Wei Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhao-Zhao Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
27
|
Zhang W, Zou Z, Zhao W, Lu S, Wu Z, Huang M, Wang X, Wang Y, Liang Y, Zhu Y, Zheng Y, Pan Y. Integrated redox-active reagents for photoinduced regio- and stereoselective fluorocarboborylation. Nat Commun 2020; 11:2572. [PMID: 32444596 PMCID: PMC7244735 DOI: 10.1038/s41467-020-16477-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Vinylboronates and alkylboronates are key components in variegated transformations in all facets of chemical science. The synthesis of vinylboronates and alkylboronates suffers from step-tedious and poor stereoselective procedures. We have developed a regulated radical difunctionalization strategy for the construction of fluorine-containing vinylboronates and alkylboronates with an integrated redox-active reagent IMDN-SO2RF. This bench-stable imidazolium sulfonate cationic salt offers a scalable and operational protocol for the fluoroalkylation-borylation of unsaturated hydrocarbons in a high regio- and stereoselective manner. The products can be further transformed into valuable fluorinated building blocks.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhengguang Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
28
|
Shang T, Zhang J, Zhang Y, Zhang F, Li XS, Zhu G. Photocatalytic Remote Oxyfluoroalkylation of Heteroalkynes: Regio-, Stereo-, and Site-Selective Access to Complex Fluoroalkylated (Z)-Alkenes. Org Lett 2020; 22:3667-3672. [DOI: 10.1021/acs.orglett.0c01163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianbo Shang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Junhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xin-Sheng Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
29
|
Kuang Z, Yang K, Zhou Y, Song Q. Base-promoted domino-borylation-protodeboronation strategy. Chem Commun (Camb) 2020; 56:6469-6479. [PMID: 32436551 DOI: 10.1039/d0cc00614a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since a nucleophilic sp2 boron species can be generated in situ under the combined action of an inorganic base, B2pin2 and methanol, research on base-promoted nucleophilic borylation of unsaturated compounds has attracted significant attention. A series of multi-borylated compounds, such as alkyl 1,2-bis(boronates), gem-diborylalkanes, and 1,1,2-tris(boronates), are constructed based on this strategy. These multi-borylated compounds can in turn undergo selective protodeboronation, creating a variety of useful boron-containing compounds. This Feature article documents the development of base-promoted domino-borylation-protodeboronation (DBP) strategies and their applications in organic synthesis.
Collapse
Affiliation(s)
- Zhijie Kuang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China.
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China. and Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
30
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
31
|
Upadhyay NS, Chaładaj W. Palladium‐Catalyzed Carboperfluoroalkylation of Alkynes with Fluoroalkyl Iodides and Arylstannanes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw Poland
| |
Collapse
|
32
|
Zhou MD, Peng Z, Li L, Wang H. Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Domański S, Gatlik B, Chaładaj W. Pd-Catalyzed Boroperfluoroalkylation of Alkynes Opens a Route to One-Pot Reductive Carboperfluoroalkylation of Alkynes with Perfluoroalkyl and Aryl Iodides. Org Lett 2019; 21:5021-5025. [DOI: 10.1021/acs.orglett.9b01618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sylwester Domański
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Beata Gatlik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
34
|
Wan Y, Shang T, Lu Z, Zhu G. Photocatalytic 1,1-Hydrofluoroalkylation of Alkynes with a Concurrent Vicinal Acylation: An Access to Fluoroalkylated Cyclic Ketones. Org Lett 2019; 21:4187-4191. [DOI: 10.1021/acs.orglett.9b01366] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yimei Wan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, People’s Republic of China
| | - Tianbo Shang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, People’s Republic of China
| | - Zenghui Lu
- Wanzhou Ecological Environment Monitoring Station, 83 Anning Road, Wanzhou, Chongqing 404000, People’s Republic of China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, People’s Republic of China
| |
Collapse
|
35
|
Abstract
![]()
Proper
choice of the base allowed trans-diboration
of propargyl alcohols with B2(pin)2 to evolve
into an exquisitely regioselective procedure for net trans-carboboration. The method is modular as to the newly introduced
carbon substituent (aryl, methyl, allyl, benzyl, alkynyl), which is
invariably placed distal to the −OH group.
Collapse
Affiliation(s)
- Hongming Jin
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim/Ruhr , Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim/Ruhr , Germany
| |
Collapse
|
36
|
Carreras J, Caballero A, Pérez PJ. Alkenyl Boronates: Synthesis and Applications. Chem Asian J 2019; 14:329-343. [DOI: 10.1002/asia.201801559] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Javier Carreras
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá (IQAR) 28805-Alcalá de Henares Madrid Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| |
Collapse
|
37
|
He X, Yue X, Zhang L, Wu S, Hu M, Li JH. Multiple-functionalizations of terminal alkynes with sodium sulfinates and tert-butyl nitrite: facile synthesis of 2H-azirines. Chem Commun (Camb) 2019; 55:3517-3520. [DOI: 10.1039/c9cc00625g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new, catalyst-free tandem annulation route to 2,2-disulfonyl-2H-azirines via multiple-functionalizations of terminal alkynes with sodium sulfinates and tert-butyl nitrite is described.
Collapse
Affiliation(s)
- Xingyi He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xin Yue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Lei Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
38
|
He W, Yu J, Wang D, Ran G, Xia XF. Synthesis of tri-substituted allyl alcohols via a copper/iron co-catalyzed cascade perfluoroalkylation/rearrangement of aryl propynyl ethers. Org Chem Front 2019. [DOI: 10.1039/c9qo00848a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A copper/iron co-catalyzed fluoroalkylation of aryl propynyl ethers for the synthesis of perfluoroalkylated tri-substituted allyl alcohol derivatives is reported.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Jipan Yu
- Laboratory of Nuclear Energy Chemistry
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|