1
|
Singh B, Kashyap S, Soni H, Verma I, Ghorai MK. Ring-Opening Cyclization (ROC) of spiro-Epoxyoxindoles with Indoles/Aldehydes: An Easy Access to Polyheterocyclic spiro-Oxindoles. J Org Chem 2025; 90:3897-3919. [PMID: 40062546 DOI: 10.1021/acs.joc.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A simple one-pot, two-step strategy for the synthesis of three-dimensional (3D) polyheterocyclic spiro-oxindoles by Lewis-acid-catalyzed Friedel-Crafts type C-3 alkylation of indoles via regioselective nucleophilic ring opening of spiro-epoxyoxindoles, followed by p-TSA-catalyzed Pictet-Spengler reaction with aldehydes in up to 98% yield and 1.4:1 diastereomeric ratio has been developed.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Hardik Soni
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
2
|
Kashyap S, Singh B, Ghorai MK. Magic Blue-Initiated S N2-Type Ring Opening of Activated Aziridines: Friedel-Crafts-Type Alkylation of Electron-Rich Arenes/Heteroarenes. J Org Chem 2024; 89:11429-11445. [PMID: 39088802 DOI: 10.1021/acs.joc.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
A transition metal-free, atom-economical, and highly stereospecific synthetic approach to Friedel-Crafts-type alkylation of arenes/heteroarenes has been developed. The protocol involves the catalytic aminium radical-cation salt (Magic Blue)-initiated SN2-type nucleophilic ring opening of activated aziridines with arenes/heteroarenes to give the corresponding 2,2-diarylethylamines up to 99% yield and 85% ee (for nonracemic aziridines) in a very short reaction time. Moreover, on reaction with 1,3-dimethylindole and benzofuran, aziridines undergo domino-ring-opening cyclization (DROC) to give the various biologically significant heterocyclic scaffolds in moderate to good yields.
Collapse
Affiliation(s)
- Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
3
|
Xing S, Jin C, Zhang P, Yang J, Liang Y, Ao X, Pi W, Wang K, Zhu B. Rapid Synthesis of 3-Methyleneisoindolin-1-ones via Metal-Free Tandem Reactions of Ester-Functionalized Aziridines. J Org Chem 2024; 89:5153-5158. [PMID: 38485493 DOI: 10.1021/acs.joc.3c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
We have disclosed a novel metal-free tandem cyclization reaction for the synthesis of 3-methyleneisoindolin-1-ones starting from ester-functionalized aziridines. This strategy can be effectively promoted by DBU and carboxylic acids. Mechanistically, it involves sequential ring opening of aziridines with carboxylic acids, lactamization, and elimination of carboxylic acids.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Changkun Jin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Panpan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jingmeng Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuxia Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinglian Ao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Wenyi Pi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
4
|
Singh B, Kashyap S, Singh S, Gupta S, Ghorai MK. Catalytic Aminium Radical-Cation Salt (Magic Blue)-Initiated S N2-Type Nucleophilic Ring-Opening Transformations of Aziridines. J Org Chem 2024; 89:2247-2263. [PMID: 38323416 DOI: 10.1021/acs.joc.3c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A simple and atom economic protocol for the construction of C-X/C-C bonds via catalytic aminium radical-cation salt (Magic Blue)-initiated SN2-type nucleophilic ring-opening transformations of racemic and nonracemic aziridines with different hetero and carbon nucleophiles to afford various amino ethers, thioethers, and amines in up to 99% yield, and with perfect enantiospecificity for some substrates but reduced ee with others (for nonracemic aziridines), is developed. This aminium radical-cation salt-initiated, SN2-type nucleophilic ring-opening strategy, along with various cyclization protocols, is employed to synthesize various biologically significant compounds.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Shishir Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Sikha Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
5
|
Zheng Y, Huang Q, Fang X, Xie Y. Route to Functionalized Tetrahydrobenzo[ d]azepines via Re 2O 7-Mediated Intramolecular Friedel-Crafts Reaction. J Org Chem 2024; 89:2001-2008. [PMID: 38251420 DOI: 10.1021/acs.joc.3c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We describe a Re2O7-mediated intramolecular dehydrative Friedel-Crafts reaction for the efficient synthesis of various benzo-fused heterocycles such as benzazepines and benzazocines. This process is characterized by a broad substrate scope, mild reaction conditions, high efficiency, and high atom economy. The potential application of this methodology was exemplified by the facile preparation of a NMDA antagonist as well as a key intermediate en route to SKF 38393.
Collapse
Affiliation(s)
- Yuzhu Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Qing Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiong Fang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
6
|
Singh B, Kumar M, Goswami G, Verma I, Ghorai MK. Ring-Opening Cyclization (ROC) of Aziridines with Propargyl Alcohols: Synthesis of 3,4-Dihydro-2 H-1,4-oxazines. J Org Chem 2023; 88:4504-4518. [PMID: 36972376 DOI: 10.1021/acs.joc.2c03093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Activated aziridines react with propargyl alcohols in the presence of Zn(OTf)2 as the Lewis acid catalyst following an SN2-type ring-opening mechanism to furnish the corresponding amino ether derivatives. Those amino ethers further undergo intramolecular hydroamination via 6-exo-dig cyclization in the presence of Zn(OTf)2 as the catalyst and tetrabutylammonium triflate salt as an additive under one-pot two-step reaction conditions. However, for nonracemic examples, ring-opening and cyclization steps were conducted under two-pot conditions. The reaction works well without any additional solvents. The final 3,4-dihydro-2H-1,4-oxazine products were obtained with 13 to 84% yield and 78 to 98% enantiomeric excess (for nonracemic examples).
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Gaurav Goswami
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
7
|
Wani IA, Sk S, Mal A, Sengupta A, Ghorai MK. Stereoselective Routes to Hexahydropyrroloindoles and Tetrahydropyrroloquinolines from Activated Aziridines and Electron Deficient 3 H-Indoles. Org Lett 2022; 24:7867-7872. [PMID: 36094406 DOI: 10.1021/acs.orglett.2c02354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unprecedented and novel synthetic route to hexahydropyrrolo[2,3-b]indoles bearing cis-contiguous stereocenters with excellent stereoselectivities (ee of >99%, dr of ≤99:1) has been disclosed that proceeds through the ring opening of activated aziridines with electron deficient 4-substituted indoles followed by a novel cyclization in a domino fashion, thereby obviating the use of 3-substituted indoles as the prerequisite nucleophile. Another efficient synthetic route to tetrahydropyrrolo[4,3,2-de]quinolines in excellent yields (≤93%) and excellent enantioselectivity (ee of >99%) has been established via ring opening of activated aziridines with 4-bromo-1-methyl-1H-indole at relatively higher temperatures followed by Cu(I)-catalyzed intramolecular C-N cyclization in the same pot. The stability and the formation of products at different temperatures are explained by computational studies.
Collapse
Affiliation(s)
- Imtiyaz Ahmad Wani
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sahid Sk
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Abhijit Mal
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arunava Sengupta
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manas K Ghorai
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
8
|
Ishida Y, Nishikata T. Radical/Iminium Domino Strategy (RIDS) for Rapid Construction of Sterically Congested γ‐Lactam‐Based Multiheterocycles. Chemistry 2022; 28:e202201047. [DOI: 10.1002/chem.202201047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuto Ishida
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| |
Collapse
|
9
|
Zhou YJ, Yang K, Fang YG, Luo SH, Chen Q, Yu SW, Wang ZY. A novel NaHCO3 promoted three‐component cyclization: Easy access to benzodisulfide heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yong-Jun Zhou
- South China Normal University School of Chemistry CHINA
| | - Kai Yang
- Gannan Medical University College of Pharmacy CHINA
| | - Yong-Gan Fang
- South China Normal University School of Chemistry CHINA
| | - Shi-He Luo
- South China Normal University School of Chemistry CHINA
| | - Qi Chen
- South China Normal University School of Chemistry CHINA
| | - Shi-Wei Yu
- South China Normal University School of Chemistry CHINA
| | - Zhao-Yang Wang
- South China Normal University School of Chemistry and Environment School of Chemistry and Environment, South China Normal University, Guangzhou 510006 guangzhou CHINA
| |
Collapse
|
10
|
Peters BBC, Andersson PG, Ruchirawat S, Ieawsuwan W. Synthesis of Chiral Tetrahydro-3-benzazepine Motifs by Iridium-Catalyzed Asymmetric Hydrogenation of Cyclic Ene-carbamates. Org Lett 2022; 24:1969-1973. [PMID: 35238569 PMCID: PMC8938950 DOI: 10.1021/acs.orglett.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient N,P-ligated iridium complex is presented for the simple preparation of chiral tetrahydro-3-benzazepine motifs by catalytic asymmetric hydrogenation. Substrates bearing both 1-aryl and 1-alkyl substituents were smoothly converted to the corresponding hydrogenated product with excellent enantioselectivity (91-99% ee) and in isolated yield (92-99%). The synthetic value of this transformation was demonstrated by a gram-scale hydrogenation and application in the syntheses of trepipam and fenoldopam.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.,School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand.,Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Winai Ieawsuwan
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
11
|
Qi L, Yang PJ, Ji WT, Tao GD, Yang G, Chai Z. Synthesis of chiral β-substituted γ-amino-butyric acid derivatives via enantioconvergent ring opening of racemic 2-(hetero)aryl aziridines with ketene silyl acetals. Org Chem Front 2022. [DOI: 10.1039/d2qo00450j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalyzed enantioconvergent ring opening of racemic 2-(hetero)aryl-N-sulfonyl aziridines with ketene silyl acetals is developed.
Collapse
Affiliation(s)
- Ling Qi
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Pei-Jun Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Middle Beijing Road, Wuhu, Anhui 241000, China
| | - Wen-Tao Ji
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Gui-De Tao
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Gaosheng Yang
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| |
Collapse
|
12
|
Xing S, Wang C, Gao T, Wang Y, Wang H, Wang H, Wang K, Zhu B. Construction of 4-spiroannulated tetrahydroisoquinoline skeletons via a sequential ring opening of aziridines and Pictet–Spengler reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05031a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stepwise cyclization involving sequential ring opening of aziridines and Pictet–Spengler reaction has been developed for the synthesis of 4-spiroannulated tetrahydroisoquinoline compounds (22 examples).
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Chenyu Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Tingxuan Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Hongzheng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Hanfei Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
13
|
Xing S, Xia H, Wang C, Wang Y, Hao L, Wang K, Zhu B. A Stepwise Synthesis of Spiroindoline Compounds via Ring Opening of Aziridines and C−H Activation/Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Hanyu Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Chenyu Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Lu Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
14
|
Haider V, Kreuzer V, Tiffner M, Spingler B, Waser M. Ammonium Salt-Catalyzed Ring-Opening of Aryl-Aziridines with β-Keto Esters. European J Org Chem 2020; 2020:5173-5177. [PMID: 32982577 PMCID: PMC7508174 DOI: 10.1002/ejoc.202000916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 02/03/2023]
Abstract
We herein report an ammonium salt-catalyzed protocol for the regioselective ring opening of aryl-aziridines with β-keto esters. The reaction gives access to a variety of highly functionalized target molecules with two consecutive stereo-genic centers and can be rendered enantioselective (up to e.r. = 91:9) by using bifunctional chiral ammonium salt catalysts.
Collapse
Affiliation(s)
- Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Viktoria Kreuzer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Maximilian Tiffner
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
15
|
Yang XY, Lin HS, Matsuo Y. Highly Selective Synthesis of Tetrahydronaphthaleno[60]fullerenes via Fullerene-Cation-Mediated Intramolecular Cyclization. J Org Chem 2019; 84:16314-16322. [PMID: 31742406 DOI: 10.1021/acs.joc.9b02618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A high-yielding protocol to construct six-membered carbon rings on fullerene is presented. This methodology with in situ fullerene-cation-mediated intramolecular cyclization provides high selectivity and efficient access to six-membered tetrahydronaphthaleno[60]fullerenes with a remarkable functional group tolerance and excellent yields. Furthermore, high solubilities of tetrahydronaphthaleno[60]fullerenes are reported.
Collapse
Affiliation(s)
- Xiao-Yu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Hao-Sheng Lin
- Department of Mechanical Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yutaka Matsuo
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China.,Department of Mechanical Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan.,Institute of Materials Innovation, Institutes of Innovation for Future Society , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 468-8603 , Japan
| |
Collapse
|
16
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2018. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1129-1150. [PMID: 31736363 DOI: 10.1080/10286020.2019.1684474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The new natural products reported in 2018 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2018 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Hajra S, Bhosale SS, Hazra A, Kanaujia N. The one pot asymmetric synthesis of 3,3'-pyrrolidonyl spiroxindoles via a regio- and stereoselective domino reaction. Org Biomol Chem 2019; 17:8140-8148. [PMID: 31432867 DOI: 10.1039/c9ob01570a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A highly efficient regio- and stereoselective domino aziridine ring opening and lactamization reaction between aziridines and 3-carboxy oxindole esters has been developed for the one pot asymmetric synthesis of 4-aryl-3,3'-spiropyrrolidonyl oxindoles with excellent selectivity (dr >99 : 1 and ee up to >99%). It was further extended to a sequential one pot protocol for the asymmetric synthesis of NH-free 3,3'-pyrrolidonyl spiroxindole, maintaining the same selectivity.
Collapse
Affiliation(s)
- Saumen Hajra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.
| | - Suhas Shivajirao Bhosale
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.
| | - Atanu Hazra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.
| | - Nikhil Kanaujia
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
18
|
Xing S, Xia H, Guo J, Zou C, Gao T, Wang K, Zhu B, Pei M, Bai M. Diastereoselective Construction of 2-Aminoindanones via an In(OTf) 3-Catalyzed Domino Reaction. J Org Chem 2019; 84:8984-8997. [PMID: 31250644 DOI: 10.1021/acs.joc.9b00876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An In(OTf)3-catalyzed domino reaction involving sequential oxidative ring opening of aziridines by using the solvent dimethyl sulfoxide and intramolecular Michael addition has been developed for the modular synthesis of 2-aminoindanone compounds by the formation of one new C═O bond and one new C-C bond. The notable feature of this strategy includes broad substrate scope, excellent trans-diastereoselectivities, highly functionalized products, and mild conditions. The catalyst In(OTf)3 plays an important role in the formation of the indanone ring.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Hanyu Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Junshuo Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Chenchen Zou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Tingxuan Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Meiqi Pei
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Mengpei Bai
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| |
Collapse
|
19
|
A facile and efficient carbocatalytic route to quaternary C-bearing N-tosylaziridines from Morita-Baylis-Hillman adduct in water. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Singh GS. Advances in synthesis and chemistry of aziridines. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|