1
|
Li L, Ding L, Zhang X, Zhang C, Wang M, Gu Z. Catalytic Atroposelective aza-Grob Fragmentation: An Approach toward Axially Chiral Biarylnitriles. J Am Chem Soc 2025; 147:17209-17216. [PMID: 40327742 DOI: 10.1021/jacs.5c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Grob fragmentation is a powerful synthetic tool for cleaving C-C bonds, which was particularly useful in the construction of seven- to nine-membered carbocycles or heterocycles. This reaction typically breaks one C-C bond and one C-X bond and forms two unsaturated functional groups. As no stereogenic centers are generated, catalytic asymmetric Grob fragmentation has remained unexplored. In this study, we have successfully developed a catalytic asymmetric aza-Grob fragmentation of α-keto oxime esters, achieving atroposelective C-C bond cleavage to construct axially chiral biarylnitriles. Single-crystal X-ray diffraction analysis of oxime esters elucidated the structure-reactivity relationship, highlighting the role of torsional strain. These studies also revealed the unique role of the 2-phenyl benzoyl group in controlling the substrate conformation, tuning reactivity, and stereoselectivity. The 1H NMR titration experiments provided brief insights into the activation mode of the catalyst with the substrate, suggesting a multi-hydrogen-bonding interaction model.
Collapse
Affiliation(s)
- Lin Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chengnuo Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
2
|
Fang W, Meng YD, Ding SY, Wang JY, Pei ZH, Shen ML, Yao CZ, Li Q, Gu Z, Yu J, Jiang HJ. Asymmetric S-Arylation of Sulfenamides to Access Axially Chiral Sulfilimines Enabled by Anionic Stereogenic-at-Cobalt(III) Complexes. Angew Chem Int Ed Engl 2025; 64:e202419596. [PMID: 39625341 DOI: 10.1002/anie.202419596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
An efficient enantioselective coupling reaction between sulfenamides and cyclic diaryliodonium salts is established via adaptive Cu/anionic stereogenic-at-Co(III) complex combined catalysis, precisely synthesizing a broad range of axially chiral sulfilimines with excellent enantioselectivities, diastereoselectivities, regioselectivities, and chemoselectivities (67 examples under same conditions, up to 98 % ee). The following thermodynamically controlled pyramidal inversion enables efficient stereodivegent synthesis of all four stereoisomers. Mechanistic studies suggest that anionic stereogenic-at-cobalt(III) complexes serve as counteranions of diaryliodonium and anionic ligand of Cu(I) catalyst simultaneously, which could be regarded as an explanation for outstanding selectivities.
Collapse
Affiliation(s)
- Wei Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Yan-Dong Meng
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Shu-Ying Ding
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Ju-Yan Wang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng-Hao Pei
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Meng-Lan Shen
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Maurya NK, Singh A, Sahu A, Kumar A, Kant R, Rao VG, Shukla SK, Kuram MR. Suzuki-Miyaura/Mizoroki-Heck coupling cascade to access 2,2'-bifunctionalized biaryls. Chem Commun (Camb) 2025; 61:1673-1676. [PMID: 39744986 DOI: 10.1039/d4cc05763e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Biaryl motifs are essential structural features in several drugs and functional molecules. Cyclic diaryliodonium has been scarcely explored as a bifunctional agent compared to ring opening and annulation reactions. Herein, a three-component cascade approach is developed to synthesize bifunctionalized biaryls employing cyclic diaryliodoniums as a biarylating agent. The mild conditions enabled a vast array of biarylated products in good yields in a single step. Furthermore, preliminary mechanistic details and photophysical properties have been investigated.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anushka Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Ankita Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Asit Kumar
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Sanjeev K Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Rahim A, Hong B, Gu Z. Base-Promoted Coupling of HFIP in Cu-Catalyzed Asymmetric Ring Opening of Cyclic Diaryliodoniums. J Org Chem 2024; 89:17673-17685. [PMID: 39523801 DOI: 10.1021/acs.joc.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a Cu-catalyzed asymmetric ring-opening reaction of cyclic diaryliodoniums with 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), enabling the construction of axially chiral biaryl compounds containing HFIP ether. HFIP is highly polar and exceptionally stable; thus, it is commonly used as a solvent due to its poor nucleophilicity. However, its use as a nucleophilic reagent has been rare. In this study, we successfully employed HFIP as a nucleophilic coupling partner in a Cu-catalyzed asymmetric ring-opening experiment of cyclic diaryliodoniums.
Collapse
Affiliation(s)
- Abdur Rahim
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
5
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Wen W, Yang C, Wu Z, Xiao D, Guo Q. Bifunctional Squaramide-Catalyzed Oxidative Kinetic Resolution: Simultaneous Access to Axially Chiral Thioether and Sulfoxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402429. [PMID: 38751149 PMCID: PMC11267355 DOI: 10.1002/advs.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Indexed: 07/25/2024]
Abstract
Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Chang‐Lin Yang
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zhu‐Lian Wu
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Dong‐Rong Xiao
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Qi‐Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| |
Collapse
|
7
|
Zhang Y, Wang Y, Wang L, Han J. Selective S-arylation of thiols with o-OTf-substituted diaryliodonium salts toward diarylsulfides. Org Biomol Chem 2024; 22:486-490. [PMID: 38111368 DOI: 10.1039/d3ob01922e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In contrast to the previously reported intramolecular aryl migration, we present the selective sulfenylation of ortho-trifluoromethanesulfonate (OTf) substituted diaryliodonium salts with thiols. As such, diarylsulfides bearing vicinal OTf groups were synthesized in good yields. The unique reactivity of the vicinal OTf group and the sulfur atom in arylsulfides offers further transformations.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yu Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
8
|
Rodríguez-Franco C, Ros A, Merino P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of Indole-Based Sulfenylated Heterobiaryls by Rhodium-Catalyzed Atroposelective Reductive Aldol Reaction. ACS Catal 2023; 13:12134-12141. [PMID: 37745194 PMCID: PMC10513111 DOI: 10.1021/acscatal.3c03422] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Indexed: 09/26/2023]
Abstract
A highly enantio- and diastereoselective dynamic kinetic resolution (DKR) of configurationally labile 3-aryl indole-2-carbaldehydes is described. The DKR proceeds via a Rh-catalyzed intermolecular asymmetric reductive aldol reaction with acrylate esters, with simultaneous generation of three stereogenic elements. The strategy relies on the labilization of the stereogenic axis that takes place thanks to a transient Lewis acid-base interaction (LABI) between the formyl group and a thioether moiety strategically located at the ortho' position. The atropisomeric indole products present a high degree of functionalization and can be further converted to a series of axially chiral derivatives, thereby expanding their potential application in drug discovery and asymmetric catalysis.
Collapse
Affiliation(s)
- Carlos Rodríguez-Franco
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Abel Ros
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Pedro Merino
- Instituto
de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosario Fernández
- Departamento
de Química Orgánica, Universidad
de Sevilla and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento
de Química Orgánica, Universidad
de Sevilla and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
9
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
10
|
Singhal R, Choudhary SP, Malik B, Pilania M. Cyclic diaryliodonium salts: applications and overview. Org Biomol Chem 2023; 21:4358-4378. [PMID: 37161758 DOI: 10.1039/d3ob00134b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
11
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
12
|
Li L, Xi J, Hong B, Gu Z. From Peripheral Stereogenic Center to Axial Chirality: Synthesis of 3‐Arylthiophene Atropisomers. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lin Li
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Junwei Xi
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Biqiong Hong
- College of Materials and Chemical Engineering Minjiang University Fuzhou Fujian 350108 People's Republic of China
| | - Zhenhua Gu
- Department of Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
- College of Materials and Chemical Engineering Minjiang University Fuzhou Fujian 350108 People's Republic of China
| |
Collapse
|
13
|
Zhang X, Zhao K, Gu Z. Transition Metal-Catalyzed Biaryl Atropisomer Synthesis via a Torsional Strain Promoted Ring-Opening Reaction. Acc Chem Res 2022; 55:1620-1633. [PMID: 35647705 DOI: 10.1021/acs.accounts.2c00175] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusArising from the restricted rotation of a single bond caused by steric or electronic effects, atropisomerism is one of the few fundamental categories for molecules to manifest their three-dimensional characters into which axially chiral biaryl compounds fall. Despite the widespread occurrence of axially chiral skeletons in natural products, bioactive molecules, and chiral ligands/organocatalysts, catalytic asymmetric methods for the synthesis of these structures still lag behind demand. Major challenges for the preparation of these chiral biaryls include accessing highly sterically hindered variants while controlling the stereoselectivity. A couple of useful strategies have emerged for the direct asymmetric synthesis of these molecules in the last two decades.Recently, we have engaged in catalytic asymmetric synthesis of biaryl atropisomers via transition metal catalysis, including asymmetric ring-openings of dibenzo cyclic compounds. During these studies, we serendipitously discovered that the two substituents adjacent to the axis cause these dibenzo cyclic molecules to be distorted to minimize steric repulsion. The distorted compounds display higher reactivity in the ring-opening reactions than the non-distorted molecules. In other words, torsional strain can promote a ring-opening reaction. On the basis of this concept, we have successfully realized the catalytic asymmetric ring-opening reaction of cyclic diaryliodoniums, dibenzo silanes, and 9H-fluoren-9-ols, which delivered several differently substituted ortho tetra-substituted biaryl atropisomers in high enantioselectivity. The torsional strain not only activates the substrates toward ring-opening under mild conditions but also changes the chemoselectivity of bond-breaking events. In the palladium-catalyzed carboxylation of S-aryl dibenzothiophenium, the torsional strain inversed the bond selectivity from exocyclic C-S bond cleavage to the ring-opening reaction.In this Account, we summarize our studies on copper-, rhodium-, or palladium-catalyzed asymmetric ring-opening reactions of dibenzo cyclic compounds as a useful collection of methods for the straightforward preparation of ortho tetra-substituted biaryl atropisomers with high enantiopurity on the basis of the above-mentioned torsional strain-promoted ring-opening coupling strategy. In the last part, the torsional strain energies are also discussed with the aid of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Kun Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
14
|
Saikia RA, Hazarika N, Biswakarma N, Chandra Deka R, Thakur AJ. Metal-free S-arylation of 5-mercaptotetrazoles and 2-mercaptopyridine with unsymmetrical diaryliodonium salts. Org Biomol Chem 2022; 20:3890-3896. [PMID: 35481589 DOI: 10.1039/d2ob00406b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we demonstrate the application of unsymmetrical iodonium salts towards S-arylation of heterocyclic thiols (especially tetrazole-5-thiols and pyridine-2-thiol) under metal-free conditions, affording a diverse range of di(hetero)aryl thioethers in moderate to good yields. A detailed study on the effects of counter-anions and the auxiliary of iodonium salts was conducted. Suitable auxiliary selection of the unsymmetrical iodonium salt offers flexibility for a wide range of aryl moieties and its incorporation into S-arylation. The DFT study supports the experimental observations of chemoselective arylation.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati-781039, India
| | - Nishant Biswakarma
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| |
Collapse
|
15
|
Cheng F, Duan DS, Jiang LM, Li BS, Wang JX, Zhou YJ, Jiao HY, Wu T, Zhu DY, Wang SH. Copper-Catalyzed Asymmetric Ring-Opening Reaction of Cyclic Diaryliodonium Salts with Imides. Org Lett 2022; 24:1394-1399. [PMID: 35132855 DOI: 10.1021/acs.orglett.2c00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient copper-catalyzed asymmetric ring-opening reaction of diaryliodonium salts with imides has been developed, affording a wide range of axially chiral 2-imidobiaryl compounds with excellent enantioselectivities and better convertibility. The potential utility of the current method has been supported by the synthesis of two known chiral ligands with better efficiency, which would be of great significance to the development of other catalytic asymmetric reactions.
Collapse
Affiliation(s)
- Fu Cheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dong-Sen Duan
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Li-Ming Jiang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Bao-Sheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jia-Xuan Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Yu-Jia Zhou
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - He-Yu Jiao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Tao Wu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
16
|
To AJ, Murphy GK. Iodolium salts as halogen-bond donor catalysts in the Nazarov cyclization: the molecular oxygen enigma. NEW J CHEM 2022. [DOI: 10.1039/d2nj02731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nazarov cyclizations of activated precurosrs are achieved under iodolium catalysis, provided that oxygen is present for catalyst activation and turnover.
Collapse
Affiliation(s)
- Avery J. To
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| | - Graham K. Murphy
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
17
|
Wang G, Huang J, Zhang J, Fu Z. Catalytically atroposelective ring-opening of configurationally labile compounds to access axially chiral biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this minireview, we evaluate and summarize the construction of axially chiral biaryls, and briefly state our personal perspectives on the future advancement of this direction.
Collapse
Affiliation(s)
- Guanjie Wang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
18
|
Zhang J, Sun T, Zhang Z, Cao H, Bai Z, Cao ZC. Nickel-Catalyzed Enantioselective Arylative Activation of Aromatic C-O Bond. J Am Chem Soc 2021; 143:18380-18387. [PMID: 34705442 DOI: 10.1021/jacs.1c09797] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pioneering nickel-catalyzed cross-coupling of C-O electrophiles was unlocked by Wenkert in the 1970s; however, the transition-metal-catalyzed asymmetric activation of aromatic C-O bonds has never been reported. Herein the first enantioselective activation of an aromatic C-O bond is demonstrated via the catalytic arylative ring-opening cross-coupling of diarylfurans. This transformation is facilitated via nickel catalysis in the presence of chiral N-heterocyclic carbene ligands, and chiral 2-aryl-2'-hydroxy-1,1'-binaphthyl (ArOBIN) skeletons are delivered axially in high yields with high ee. Moreover, this versatile skeleton can be transformed into various synthetic useful intermediates, chiral catalysts, and ligands by using the CH- and OH-based modifiable sites. This chemistry features mild conditions and good atom economy.
Collapse
Affiliation(s)
- Jintong Zhang
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tingting Sun
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zishuo Zhang
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haiqun Cao
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhushuang Bai
- Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zhi-Chao Cao
- Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
19
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
20
|
Antonkin NS, Vlasenko YA, Yoshimura A, Smirnov VI, Borodina TN, Zhdankin VV, Yusubov MS, Shafir A, Postnikov PS. Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. J Org Chem 2021; 86:7163-7178. [PMID: 33944564 DOI: 10.1021/acs.joc.1c00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel approach to the preparation of imidazole-substituted cyclic iodonium salts has been developed via the oxidative cyclization of 1-phenyl-5-iodoimidazole using a cheap and available Oxone/H2SO4 oxidative system. The structure of the new polycyclic heteroarenes has been confirmed by single-crystal X-ray diffractometry, revealing the characteristic structure features for cyclic iodonium salts. The newly produced imidazole-flanked cyclic iodonium compounds were found to readily engage in a heterocyclization reaction with elemental sulfur, affording benzo[5,1-b]imidazothiazoles in good yields.
Collapse
Affiliation(s)
- Nikita S Antonkin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Yulia A Vlasenko
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Akira Yoshimura
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Vladimir I Smirnov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Tatyana N Borodina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Viktor V Zhdankin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Alexandr Shafir
- Department of Biological Chemistry, IQAC-CSIC, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Solid-State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| |
Collapse
|
21
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
22
|
Cheng JK, Xiang SH, Li S, Ye L, Tan B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem Rev 2021; 121:4805-4902. [PMID: 33775097 DOI: 10.1021/acs.chemrev.0c01306] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
23
|
Duan L, Wang Z, Zhao K, Gu Z. Enantioselective preparation of atropisomeric biaryl trifluoromethylsulfanes via ring-opening of cyclic diaryliodoniums. Chem Commun (Camb) 2021; 57:3881-3884. [PMID: 33871504 DOI: 10.1039/d1cc00171j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two convenient and practical methods for the synthesis of axially chiral biaryls bearing the trifluoromethylthio group are reported. A Cu-catalyzed enantioselective ring-opening reaction of cyclic diaryliodoniums with CsSCF3 enables the direct synthesis of trifluoromethylthiolated biaryl atropisomers in high yields and enantioselectivity. For unsymmetric cyclic diaryliodoniums bearing an adjacent group to the C-I bond, a two-step procedure is required to achieve good regio- and enantioselectivity.
Collapse
Affiliation(s)
- Longhui Duan
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhonggui Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Kun Zhao
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
24
|
Teng F, Yu T, Peng Y, Hu W, Hu H, He Y, Luo S, Zhu Q. Palladium-Catalyzed Atroposelective Coupling–Cyclization of 2-Isocyanobenzamides to Construct Axially Chiral 2-Aryl- and 2,3-Diarylquinazolinones. J Am Chem Soc 2021; 143:2722-2728. [DOI: 10.1021/jacs.1c00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yan Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|
25
|
Zhao K, Yang S, Gong Q, Duan L, Gu Z. Diols Activation by Cu/Borinic Acids Synergistic Catalysis in Atroposelective Ring‐Opening of Cyclic Diaryliodoniums. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kun Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Shan Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Qi Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Longhui Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Ocean College Minjiang University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
26
|
Zhao K, Yang S, Gong Q, Duan L, Gu Z. Diols Activation by Cu/Borinic Acids Synergistic Catalysis in Atroposelective Ring‐Opening of Cyclic Diaryliodoniums. Angew Chem Int Ed Engl 2021; 60:5788-5793. [DOI: 10.1002/anie.202014127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Kun Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Shan Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Qi Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Longhui Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Ocean College Minjiang University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
27
|
Ke J, Zu B, Guo Y, Li Y, He C. Hexafluoroisopropanol-Enabled Copper-Catalyzed Asymmetric Halogenation of Cyclic Diaryliodoniums for the Synthesis of Axially Chiral 2,2'-Dihalobiaryls. Org Lett 2021; 23:329-333. [PMID: 33372799 DOI: 10.1021/acs.orglett.0c03833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient asymmetric halogenation of cyclic diaryliodonium salts is demonstrated, which gives access to a wide range of axially chiral 2,2'-dihalobiaryls in good to excellent yields and with excellent enantioselectivities. The use of CuX with chiral bisoxazoline ligand and tetrabutylammonium halides in the unique solvent of hexafluoroisopropanol (HFIP) led to the best results in the process. The axially chiral 2,2'-dihalobiaryls can be transformed into a number of enantiopure chiral ligands that could be potentially useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
28
|
Deng Z, Ouyang Y, Ao Y, Cai Q. Copper(I)-Catalyzed Asymmetric Desymmetric Intramolecular Alkenyl C—N Coupling Reaction. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Kantarod K, Worakul T, Soorukram D, Kuhakarn C, Reutrakul V, Surawatanawong P, Wattanathana W, Leowanawat P. Dibenzopleiadiene-embeded polyaromatics via [4 + 3] annulative decarbonylation/decarboxylation. Org Chem Front 2021. [DOI: 10.1039/d0qo00942c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient sequential cross-coupling/annulation strategy is developed to construct structurally and optoelectronically diverse class of dibezopleiadiene-embeded polyaromatics.
Collapse
Affiliation(s)
- Kritchasorn Kantarod
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Thanapat Worakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Darunee Soorukram
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chutima Kuhakarn
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Vichai Reutrakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Panida Surawatanawong
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering
- Faculty of Engineering
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Pawaret Leowanawat
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
30
|
Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies. Chem Soc Rev 2021; 50:2968-2983. [DOI: 10.1039/d0cs00870b] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Atroposelective transformations of (hetero)biaryls are classified into desymmetrization, kinetic resolution, dynamic kinetic resolution, and dynamic kinetic asymmetric transformation depending on the nature and behavior of the starting material.
Collapse
Affiliation(s)
- José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Carlos Rodríguez-Franco
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Rosario Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| |
Collapse
|
31
|
Wang Y, Deng L, Zhang X, Mou Z, Niu D. A Radical Approach to Making Unnatural Amino Acids: Conversion of C−S Bonds in Cysteine Derivatives into C−C Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yingwei Wang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Li‐Fan Deng
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze‐Dong Mou
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
32
|
Wang Y, Deng LF, Zhang X, Mou ZD, Niu D. A Radical Approach to Making Unnatural Amino Acids: Conversion of C−S Bonds in Cysteine Derivatives into C−C Bonds. Angew Chem Int Ed Engl 2020; 60:2155-2159. [PMID: 33022829 DOI: 10.1002/anie.202012503] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Yingwei Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Li-Fan Deng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
33
|
Zhu K, Song Z, Wang Y, Zhang F. Synthesis of 2,2′-Dihalobiaryls via Cu-Catalyzed Halogenation of Cyclic Diaryliodonium Salts. Org Lett 2020; 22:9356-9359. [DOI: 10.1021/acs.orglett.0c03614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zongqiang Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
34
|
Luo W, Wang Z, Cao X, Liang D, Wei M, Yin K, Li L. Construction of Benzo-1,2,3-thiazaphosphole Heterocycles by Annulations of ortho-Phosphinoarenesulfonyl Fluorides with Trimethylsilyl Azide. J Org Chem 2020; 85:14785-14794. [PMID: 32885966 DOI: 10.1021/acs.joc.0c01309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Annulations of ortho-phosphinoarenesulfonyl fluorides with trimethylsilyl azide were developed to access an unprecedented benzo-1,2,3-thiazaphosphole heterocycle. A corresponding reaction mechanism was proposed and further elucidated by experimental and computational studies. The reaction proceeds through a Staudinger-type iminophosphorane intermediate followed by intramolecular trapping with sulfonyl fluoride.
Collapse
Affiliation(s)
- Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhenguo Wang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Keshu Yin
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
35
|
Zhang X, Zhao K, Li N, Yu J, Gong L, Gu Z. Atroposelective Ring Opening of Cyclic Diaryliodonium Salts with Bulky Anilines Controlled by a Chiral Cobalt(III) Anion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xue Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Kun Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Na Li
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Jie Yu
- Department of Applied Chemistry Anhui Agricultural University Hefei Anhui 230026 P. R. China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Ocean College Minjiang University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
36
|
Zhang X, Zhao K, Li N, Yu J, Gong L, Gu Z. Atroposelective Ring Opening of Cyclic Diaryliodonium Salts with Bulky Anilines Controlled by a Chiral Cobalt(III) Anion. Angew Chem Int Ed Engl 2020; 59:19899-19904. [DOI: 10.1002/anie.202008431] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Xue Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Kun Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Na Li
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Jie Yu
- Department of Applied Chemistry Anhui Agricultural University Hefei Anhui 230026 P. R. China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Ocean College Minjiang University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
37
|
Chao Z, Ma M, Gu Z. Cu-Catalyzed Site-Selective and Enantioselective Ring Opening of Cyclic Diaryliodoniums with 1,2,3-Triazoles. Org Lett 2020; 22:6441-6446. [DOI: 10.1021/acs.orglett.0c02256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zengyin Chao
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingming Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
38
|
Caspers LD, Spils J, Damrath M, Lork E, Nachtsheim BJ. One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts. J Org Chem 2020; 85:9161-9178. [PMID: 32539390 DOI: 10.1021/acs.joc.0c01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two one-pot procedures for the construction of carbon-bridged diaryliodonium triflates and tetrafluoroborates are described. Strong Brønsted acids enable the effective Friedel-Crafts alkylation with diversely substituted o-iodobenzyl alcohol derivatives, providing diphenylmethane scaffolds, which are subsequently oxidized and cyclized to the corresponding dibenzo[b,e]iodininium salts. Based on NMR investigations and density functional theory (DFT) calculations, we could verify the so-far-undescribed existence of two stable isomers in cyclic iodonium salts substituted with aliphatic side chains in the carbon bridge.
Collapse
Affiliation(s)
- Lucien D Caspers
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Julian Spils
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Mattis Damrath
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
39
|
Frey J, Malekafzali A, Delso I, Choppin S, Colobert F, Wencel-Delord J. Enantioselective Synthesis of N-C Axially Chiral Compounds by Cu-Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020; 59:8844-8848. [PMID: 32157781 DOI: 10.1002/anie.201914876] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Indexed: 12/18/2022]
Abstract
N-C axially chiral compounds have emerged recently as appealing motifs for drug design. However, the enantioselective synthesis of such molecules is still poorly developed and surprisingly no metal-catalyzed atroposelective N-arylations have been described. Herein, we disclose an unprecedented Cu-catalyzed atroposelective N-C coupling that proceeds at room temperature. Such mild reaction conditions, which are a crucial parameter for atropostability of the newly generated products, are operative thanks to the use of hypervalent iodine reagents as a highly reactive coupling partners. A large panel of the N-C axially chiral compounds was afforded with very high enantioselectivity (up to >99 % ee) and good yields (up to 76 %). Post-modifications of thus accessed atropisomeric compounds allows further expansion of the diversity of these appealing compounds.
Collapse
Affiliation(s)
- Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Alaleh Malekafzali
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Isabel Delso
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| |
Collapse
|
40
|
Enantioselective Synthesis of N–C Axially Chiral Compounds by Cu‐Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Zhu K, Wang Y, Fang Q, Song Z, Zhang F. Enantioselective Synthesis of Axially Chiral Biaryls via Copper-Catalyzed Thiolation of Cyclic Diaryliodonium Salts. Org Lett 2020; 22:1709-1713. [DOI: 10.1021/acs.orglett.9b04555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zongqiang Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
42
|
Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Enantioselective Construction of Axially Chiral Amino Sulfide Vinyl Arenes by Chiral Sulfide‐Catalyzed Electrophilic Carbothiolation of Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaoyan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Quanbin Jiang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
43
|
Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Enantioselective Construction of Axially Chiral Amino Sulfide Vinyl Arenes by Chiral Sulfide-Catalyzed Electrophilic Carbothiolation of Alkynes. Angew Chem Int Ed Engl 2020; 59:4959-4964. [PMID: 31967383 DOI: 10.1002/anie.201915470] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 01/07/2023]
Abstract
The enantioselective construction of axially chiral compounds by electrophilic carbothiolation of alkynes is disclosed for the first time. This enantioselective transformation is enabled by the use of a Ts-protected bifunctional sulfide catalyst and Ms-protected ortho-alkynylaryl amines (Ts=tosyl; Ms=mesyl). Both electrophilic arylthiolating and electrophilic trifluoromethylthiolating reagents are suitable for this reaction. The obtained products of axially chiral vinyl-aryl amino sulfides can be easily converted into biaryl amino sulfides, biaryl amino sulfoxides, biaryl amines, vinyl-aryl amines, and other valuable difunctionalized compounds.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaoyan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Quanbin Jiang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jie Luo
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
44
|
Ye Z, Li Y, Xu K, Chen N, Zhang F. Cascade π-Extended Decarboxylative Annulation Involving Cyclic Diaryliodonium Salts: Site-Selective Synthesis of Phenanthridines and Benzocarbazoles via a Traceless Directing Group Strategy. Org Lett 2019; 21:9869-9873. [PMID: 31774290 DOI: 10.1021/acs.orglett.9b03775] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel cascade π-extended decarboxylative annulation (PEDA) involved with cyclic diaryliodonium salts is described. Via fine-tuning of the reaction conditions, the Pd(II)-catalyzed site-selective N1/C2 or C2/C3 annulation of commercially available indole-2-carboxylic acids can be achieved, affording valuable phenanthridines or benzocarbazoles, respectively. The key strategy is the carboxylic acid functionality being employed as both a traceless directing group for the ortho C-N or C-C coupling and a reactive group for the cascade π-extended decarboxylative annulation in a highly step economical manner.
Collapse
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yong Li
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Kai Xu
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Na Chen
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| |
Collapse
|
45
|
Duan L, Zhao K, Wang Z, Zhang FL, Gu Z. Enantioselective Ring-Opening/Oxidative Phosphorylation and P-Transfer Reaction of Cyclic Diaryliodoniums. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03454] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Longhui Duan
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Kun Zhao
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhonggui Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Feng-Lian Zhang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
46
|
Li Q, Zhang M, Zhan S, Gu Z. Copper-Catalyzed Enantioselective Ring-Opening of Cyclic Diaryliodoniums and O-Alkylhydroxylamines. Org Lett 2019; 21:6374-6377. [DOI: 10.1021/acs.orglett.9b02267] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qigang Li
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Mingkai Zhang
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Shuming Zhan
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
47
|
Xue X, Gu Z. Synthesis of Bridged Biaryl Atropisomers via Sequential Cu- and Pd-Catalyzed Asymmetric Ring Opening and Cyclization. Org Lett 2019; 21:3942-3945. [DOI: 10.1021/acs.orglett.9b01062] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoping Xue
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
48
|
Zhu K, Xu K, Fang Q, Wang Y, Tang B, Zhang F. Enantioselective Synthesis of Axially Chiral Biaryls via Cu-Catalyzed Acyloxylation of Cyclic Diaryliodonium Salts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00695] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bencan Tang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
49
|
Himmelstrup J, Buendia MB, Sun XW, Kramer S. Enantioselective aryl–aryl coupling facilitated by chiral binuclear gold complexes. Chem Commun (Camb) 2019; 55:12988-12991. [DOI: 10.1039/c9cc07175j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first example of highly enantioselective aryl–aryl coupling mediated by chiral gold complexes is reported.
Collapse
Affiliation(s)
- Jonas Himmelstrup
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Mikkel B. Buendia
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Xing-Wen Sun
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Søren Kramer
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|