1
|
Munan S, Chang YT, Samanta A. Chronological development of functional fluorophores for bio-imaging. Chem Commun (Camb) 2024; 60:501-521. [PMID: 38095135 DOI: 10.1039/d3cc04895k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Functional fluorophores represent an emerging research field, distinguished by their diverse applications, especially in sensing and cellular imaging. After the discovery of quinine sulfate and subsequent elucidation of the fluorescence mechanism by Sir George Stokes, research in the field of fluorescence gained momentum. Over the past few decades, advancements in sophisticated instruments, including super-resolution microscopy, have further promoted cellular imaging using traditional fluorophores. These advancements include deciphering sensing mechanisms via photochemical reactions and scrutinizing the applications of fluorescent probes that specifically target organelles. This approach elucidates molecular interactions with biomolecules. Despite the abundance of literature illustrating different classes of probe development, a concise summary of newly developed fluorophores remains inadequate. In this review, we systematically summarize the chronological discovery of traditional fluorophores along with new fluorophores. We briefly discuss traditional fluorophores ranging from visible to near-infrared (NIR) in the context of cellular imaging and in vivo imaging. Furthermore, we explore ten new core fluorophores developed between 2007 and 2022, which exhibit advanced optical properties, providing new insights into bioimaging. We illustrate the utilization of new fluorophores in cellular imaging of biomolecules, such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and proteins and microenvironments, especially pH and viscosity. Few of the fluorescent probes provided new insights into disease progression. Furthermore, we speculate on the potential prospects and significant challenges of existing fluorophores and their potential biomedical research applications. By addressing these aspects, we intend to illuminate the compelling advancements in fluorescent probe development and their potential influence across various fields.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| |
Collapse
|
2
|
Doloczki S, Kern C, Holmberg KO, Swartling FJ, Streuff J, Dyrager C. Photoinduced Ring-Opening and Phototoxicity of an Indolin-3-one Derivative. Chemistry 2023; 29:e202300864. [PMID: 37332083 DOI: 10.1002/chem.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The study of a fluorescent indolin-3-one derivative is reported that, as opposed to its previously described congeners, selectively undergoes photoactivated ring-opening in apolar solvents. The excited state involved in this photoisomerization was partially deactivated by the formation of singlet oxygen. Cell studies revealed lipid droplet accumulation and efficient light-induced cytotoxicity.
Collapse
Affiliation(s)
- Susanne Doloczki
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Christoph Kern
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Jan Streuff
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Christine Dyrager
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| |
Collapse
|
3
|
Dubey N, Ramteke S, Jain NK, Dutta T, Lal Koner A. Folate‐Receptor‐Mediated Uptake of Carbon Dots as a pH‐Responsive Carrier for Chemotherapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202201604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naveneet Dubey
- School of Pharmaceutical Sciences Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV) Bhopal 462033 India
| | - Suman Ramteke
- School of Pharmaceutical Sciences Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV) Bhopal 462033 India
| | - N. K. Jain
- School of Pharmaceutical Sciences Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV) Bhopal 462033 India
| | - Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry Indian Institute of Science Education and Research (IISER) Bhauri Bhopal 462066 India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry Indian Institute of Science Education and Research (IISER) Bhauri Bhopal 462066 India
| |
Collapse
|
4
|
Lee WH, Lai JZ, Hsu YH, Cheng FY, Luo CL, Huang YC, Lin TC, Chien FC. A two-photon fluorescence probe for cell membrane imaging under temporal-focusing multiphoton excitation microscopy (TFMPEM). Chem Commun (Camb) 2021; 57:13118-13121. [PMID: 34807218 DOI: 10.1039/d1cc04962c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small-sized chromophore, BTTA-2OH, manifesting favorable solubility, large two-photon excitation efficiency, and good fluorescence photostability was synthesized to label the membrane of living cells for visualizing the dynamic movement of membrane-related vesicles via a two-photon fluorescence imaging technique based on wavelength-tunable temporal-focusing multiphoton excitation microscopy.
Collapse
Affiliation(s)
- Wei-Hsuan Lee
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Jian-Zong Lai
- Department of Optics and Photonics, National Central University, Taoyuan City 32001, Taiwan.
| | - Yu-Hsuan Hsu
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Fung-Yu Cheng
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan.
| | - Ching-Lung Luo
- Department of Optics and Photonics, National Central University, Taoyuan City 32001, Taiwan.
| | - Yung-Chin Huang
- Department of Optics and Photonics, National Central University, Taoyuan City 32001, Taiwan.
| | - Tzu-Chau Lin
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan. .,NCU-Covestro Research Center, National Central University, Taoyuan City 32001, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan City 32001, Taiwan.
| |
Collapse
|
5
|
Biswas S, Dutta T, Silswal A, Bhowal R, Chopra D, Koner AL. Strategic engineering of alkyl spacer length for a pH-tolerant lysosome marker and dual organelle localization. Chem Sci 2021; 12:9630-9644. [PMID: 34349935 PMCID: PMC8293980 DOI: 10.1039/d1sc00542a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022] Open
Abstract
Long-term visualization of lysosomal properties is extremely crucial to evaluate diseases related to their dysfunction. However, many of the reported lysotrackers are less conducive to imaging lysosomes precisely because they suffer from fluorescence quenching and other inherent drawbacks such as pH-sensitivity, polarity insensitivity, water insolubility, slow diffusibility, and poor photostability. To overcome these limitations, we have utilized an alkyl chain length engineering strategy and synthesized a series of lysosome targeting fluorescent derivatives namely NIMCs by attaching a morpholine moiety at the peri position of the 1,8-naphthalimide (NI) ring through varying alkyl spacers between morpholine and 1,8-naphthalimide. The structural and optical properties of the synthesized NIMCs were explored by 1H-NMR, single-crystal X-ray diffraction, UV-Vis, and fluorescence spectroscopy. Afterward, optical spectroscopic measurements were carefully performed to identify a pH-tolerant, polarity sensitive, and highly photostable fluoroprobes for further live-cell imaging applications. NIMC6 displayed excellent pH-tolerant and polarity-sensitive properties. Consequently, all NIMCs were employed in kidney fibroblast cells (BHK-21) to investigate their applicability for lysosome targeting and probing lysosomal micropolarity. Interestingly, a switching of localization from lysosomes to the endoplasmic reticulum (ER) was also achieved by controlling the linker length and this phenomenon was subsequently applied in determining ER micropolarity. Additionally, the selected probe NIMC6 was also employed in BHK-21 cells for 3-D spheroid imaging and in Caenorhabditis elegans (C. elegans) for in vivo imaging, to evaluate its efficacy for imaging animal models.
Collapse
Affiliation(s)
- Suprakash Biswas
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Rohit Bhowal
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Apurba L Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| |
Collapse
|
6
|
Fam KT, Collot M, Klymchenko AS. Probing biotin receptors in cancer cells with rationally designed fluorogenic squaraine dimers. Chem Sci 2020; 11:8240-8248. [PMID: 34094177 PMCID: PMC8163205 DOI: 10.1039/d0sc01973a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorogenic probes enable imaging biomolecular targets with high sensitivity and maximal signal-to-background ratio under non-wash conditions. Here, we focus on the molecular design of biotinylated dimeric squaraines that undergo aggregation-caused quenching in aqueous media through intramolecular H-type dimerization, but turn on their fluorescence in apolar environment due to target-mediated disaggregation. Our structure-property study revealed that depending on the linkers used to connect the squaraine dyes, different aggregation patterns could be obtained (intramolecular dimerization versus intermolecular aggregation) leading to different probing efficiencies. Using a relatively short l-lysine linker we developed a bright fluorogenic probe, Sq2B, displaying only intramolecular dimerization-caused quenching properties in aqueous media. The latter was successfully applied for imaging biotin receptors, in particular sodium-dependent multivitamin transporter (SMVT), which are overexpressed at the surface of cancer cells. Competitive displacement with SMVT-targets, such as biotin, lipoic acid or sodium pantothenate, showed Sq2B targeting ability to SMVT. This fluorogenic probe for biotin receptors could distinguish cancer cells (HeLa and KB) from model non-cancer cell lines (NIH/3T3 and HEK293T). The obtained results provide guidelines for development of new dimerization-based fluorogenic probes and propose bright tools for imaging biotin receptors, which is particularly important for specific detection of cancer cells.
Collapse
Affiliation(s)
- Kyong T Fam
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie 67401 Illkirch France
| | - Mayeul Collot
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie 67401 Illkirch France
| | - Andrey S Klymchenko
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie 67401 Illkirch France
| |
Collapse
|