1
|
Kobayashi Y, Lu Y, Li N, Endo N, Sotome K, Ueno K, Tahara Y, Ishihara A. A new phthalide derivative from the mushroom Cyclocybe cf. erebia culture filtrate affects the phase of circadian rhythms in mouse fibroblasts. Biosci Biotechnol Biochem 2025; 89:354-361. [PMID: 39657072 DOI: 10.1093/bbb/zbae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Circadian rhythms are biological systems that provide approximately 24-h cycles for the behavior and physiological functions of organisms. As diverse modern lifestyles often cause disturbances in circadian rhythms, new approaches to their regulation are required. Therefore, new compounds that affect circadian rhythms have been explored in edible mushrooms. The extract from the culture filtrate of Cyclocybe cf. erebia showed activity that advanced the circadian rhythm in a bioassay with mouse fibroblasts expressing the LUCIFERASE protein under the control of the Period2 promoter. Bioassay-guided fractionation of the extract resulted in the isolation of the compound. Spectroscopic analyses identified the compound as a phthalide derivative, and the compound was named cyclocybelide. Treatment of mouse fibroblasts with the compound shifted the circadian rhythm forward, irrespective of the timing of treatment. In addition, some phthalide derivatives with hydroxy and methoxy groups showed similar effects on circadian rhythms.
Collapse
Affiliation(s)
- Yusei Kobayashi
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yuanyuan Lu
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Li
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yu Tahara
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ishihara
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
- Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
2
|
Wu S, Chen X, Ren J, Liu P, Yan Q, Chen Z. Cuparene-type sesquiterpenes with neuroprotective activities from the edible mushroom Flammulina filiformis. Fitoterapia 2024; 179:106235. [PMID: 39321853 DOI: 10.1016/j.fitote.2024.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Four new cuparene-type sesquiterpenes, flammuterpenols A - D (1-4), along with one known congener (5) were isolated from the solid culture of edible mushroom Flammulina filiformis. Their structures with a benzoxabicyclo[3.2.1]octane core were elucidated by integrated multiple spectroscopic techniques, electronic circular dichroism, and single crystal X-ray diffraction analysis. Biologically, compounds 1-5 were evaluated in vitro for their neuroprotective effects against 6-hydroxydopamine induced cell death in human neuroblastoma SH-SY5Y cells. All of them exhibited remarkable neuroprotective effects possessing the EC50 values ranging from 0.93 ± 0.02 to 10.28 ± 0.10 μM. These findings not only enrich the structural diversity of cuparene-type sesquiterpenes, but also provide potential candidates for the further development of the neuroprotective agents.
Collapse
Affiliation(s)
- Shouyuan Wu
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Xianqiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Jingling Ren
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Peilian Liu
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Qing Yan
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Ziming Chen
- Western Guangdong Characteristic Biology and Medicine Engineering and Research Center, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China.
| |
Collapse
|
3
|
Naturally Occurring 8ß,13ß-kaur-15-en-17-al and Anti-Malarial Activity from Podocarpus polystachyus Leaves. Pharmaceuticals (Basel) 2022; 15:ph15070902. [PMID: 35890200 PMCID: PMC9318793 DOI: 10.3390/ph15070902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Despite much interest and studies toward the genus Podocarpus, the anti-malarial evaluation of Podocarpus polystachyus’s phytoconstituents remains lacking. Herein, the phytoconstituents of P. polystachyus leaves and their anti-malarial effect against Plasmodium falciparum were investigated for the first time. One new natural product, 8ß,13ß-kaur-15-en-17-al (1), along with three known compounds, 8ß,13ß-kaur-15-en-17-ol (2) and 13ß-kaur-16-ene (3), and α-tocopherol hydroquinone (4) were isolated via HR-ESI-MS and NMR analyses. Compounds 1 and 2 inhibited P. falciparum growth at 12 and 52 µM of IC50, respectively. Their anti-malarial activity was associated with the in silico P. falciparum lactate dehydrogenase (PfLDH) inhibition. Molecular docking of ligands 1 and 2 with the putative target PfLDH revealed ~−2 kcal/mol of binding energies more negative than the control. Molecular dynamic simulations (100 ns) showed equal or smaller deviation values (RMSD, RMSF, Rg) and stronger interactions of PfLDH-1 and PfLDH-2 complexes via at least one consistent H-bond than the control. Additionally, a slightly increased PfLDH H-bond profile in their interactions improved the PfLDH dynamic and structural stabilities. Overall, this study supports the relevance of 1 and 2 as plasmodial growth inhibitors with their putative anti-PfLDH activity, which could be a potential scaffold for developing anti-malarial drugs.
Collapse
|
4
|
Cho N, Kikuzato K, Futamura Y, Shimizu T, Hayase H, Kamisaka K, Takaya D, Yuki H, Honma T, Niikura M, Kobayashi F, Watanabe N, Osada H, Koyama H. New antimalarials identified by a cell-based phenotypic approach: Structure-activity relationships of 2,3,4,9-tetrahydro-1H-β-carboline derivatives possessing a 2-((coumarin-5-yl)oxy)alkanoyl moiety. Bioorg Med Chem 2022; 66:116830. [PMID: 35594648 DOI: 10.1016/j.bmc.2022.116830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
The identification, structure-activity relationships (SARs), and biological effects of new antimalarials consisting of a 2,3,4,9-tetrahydro-1H-β-carboline core, a coumarin ring, and an oxyalkanoyl linker are described. A cell-based phenotypic approach was employed in this search for novel antimalarial drugs with unique modes of action. Our screening campaign of the RIKEN compound library succeeded in the identification of the known tetrahydro-β-carboline derivative (4e) as a hit compound showing significant in vitro activity. SAR studies on this chemical series led to the discovery of compound 4h having a (R)-methyl group on the oxyacetyl linker with potent inhibition of parasite growth (IC50 = 2.0 nM). Compound 4h was also found to exhibit significant in vivo antimalarial effects in mouse models. Furthermore, molecular modeling studies on 4e, 4h, and its diastereomer (4j) suggested that the (R)-methyl group of 4h forces the preferential adoption of a specific conformer which is considered to be an active conformer.
Collapse
Affiliation(s)
- Nobuo Cho
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ko Kikuzato
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroki Hayase
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kikuko Kamisaka
- RIKEN Center for Biosystems Dynamic Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Daisuke Takaya
- RIKEN Center for Biosystems Dynamic Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitomi Yuki
- RIKEN Center for Biosystems Dynamic Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamic Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Nobumoto Watanabe
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroo Koyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
5
|
Zhou W, Voituriez A. Synthesis of Cyclopentenones with C4-Quaternary Stereocenters via Stereospecific [3,3]-Sigmatropic Rearrangement and Applications in Total Synthesis of Sesquiterpenoids. J Am Chem Soc 2021; 143:17348-17353. [PMID: 34661403 DOI: 10.1021/jacs.1c07966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cationic gold(I)-catalyzed asymmetric [3,3]-sigmatropic rearrangement of sulfonium leads after cyclization to cyclopentenones with a C4-quaternary stereocenter. Starting with simple vinyl sulfoxides and propargyl silane, numerous compounds were isolated with moderate to good yields and excellent enantiomeric excesses (26 examples). The application of this simple methodology allowed the efficient total synthesis of five natural sesquiterpenoids, including enokipodin A and B, hitoyopodin A, lagopodin A, and isocuparene-3,4-diol.
Collapse
Affiliation(s)
- Weiping Zhou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Asai S, Tsunematsu Y, Masuya T, Otaka J, Osada H, Watanabe K. Uncovering hidden sesquiterpene biosynthetic pathway through expression boost area-mediated productivity enhancement in basidiomycete. J Antibiot (Tokyo) 2020; 73:721-728. [DOI: 10.1038/s41429-020-0355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022]
|
7
|
Fujitani B, Hanaya K, Sugai T, Higashibayashi S. Stepwise approach for sterically hindered C sp3-C sp3 bond formation by dehydrogenative O-alkylation and Lewis acid-catalyzed [1,3]-rearrangement towards the arylalkylcyclopentane skeleton of sesquiterpenes. Chem Commun (Camb) 2020; 56:3621-3624. [PMID: 32104846 DOI: 10.1039/d0cc01017k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A stepwise dehydrogenative cross-coupling method was developed for the formation of sterically hindered Csp3-Csp3 bonds. Intramolecular dehydrogenative O-alkylation of a β-ketoester by 2,3-dichloro-5,6-dicyano-p-benzoquinone to form an oxolane followed by Lewis acid-catalyzed [1,3]-rearrangement furnished the sesquiterpene arylmethylcyclopentane skeleton. The formal syntheses of herbertane-type β-herbertenol, cuparane-type enokipodins A and B were also achieved.
Collapse
Affiliation(s)
- Ban Fujitani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kengo Hanaya
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Shuhei Higashibayashi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
8
|
Tabuchi A, Fukushima-Sakuno E, Osaki-Oka K, Futamura Y, Motoyama T, Osada H, Ishikawa NK, Nagasawa E, Tokimoto K. Productivity and bioactivity of enokipodins A-D of Flammulina rossica and Flammulina velutipes. Biosci Biotechnol Biochem 2020; 84:876-886. [PMID: 31942814 DOI: 10.1080/09168451.2020.1714421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Enokipodins are antimicrobial sesquiterpenes produced by Flammulina velutipes in a mycelial culture medium. To date, enokipodin production has not been reported in other members of the genus Flammulina. Hence, in this study, the production of enokipodins A, B, C, and D by F. velutipes and F. rossica was investigated. Some strains of F. rossica were confirmed to produce at least one of the four enokipodins in the culture medium. However, some strains of F. velutipes did not produce any of the enokipodins. In an antibacterial assay using liquid medium, enokipodin B showed the strongest growth inhibitory activity against Bacillus subtilis among the four types of enokipodins. Enokipodin B inhibited the spore germination of some plant pathogenic fungi. Enokipodins B and D exerted moderate anti-proliferative activity against some cancer cell lines, and enokipodins A and C inhibited the proliferation of the malarial parasite, Plasmodium falciparum.
Collapse
Affiliation(s)
- Akiko Tabuchi
- The Tottori Mycological Institute, The Japan Kinoko Research Center Foundation, Tottori, Japan
| | - Emi Fukushima-Sakuno
- The Tottori Mycological Institute, The Japan Kinoko Research Center Foundation, Tottori, Japan
| | | | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Noemia Kazue Ishikawa
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Eiji Nagasawa
- The Tottori Mycological Institute, The Japan Kinoko Research Center Foundation, Tottori, Japan
| | - Keisuke Tokimoto
- The Tottori Mycological Institute, The Japan Kinoko Research Center Foundation, Tottori, Japan
| |
Collapse
|
9
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2018. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1129-1150. [PMID: 31736363 DOI: 10.1080/10286020.2019.1684474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The new natural products reported in 2018 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2018 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Tsunematsu Y, Takanishi J, Asai S, Masuya T, Nakazawa T, Watanabe K. Genomic Mushroom Hunting Decrypts Coprinoferrin, A Siderophore Secondary Metabolite Vital to Fungal Cell Development. Org Lett 2019; 21:7582-7586. [PMID: 31496254 DOI: 10.1021/acs.orglett.9b02861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LaeA is a positive global regulator of secondary metabolism in Ascomycetes, but its role in Basidiomycetes, including medicinal mushrooms, remains uncharacterized. Here, knockout of laeA in the model mushroom Coprinopsis cinerea unexpectedly upregulated the biosynthesis of a novel siderophore, coprinoferrin. Furthermore, knockout of the nonribosomal peptide synthetase-encoding cpf1 responsible for coprinoferrin biosynthesis resulted in growth defect and loss of fruiting body formation, indicating the complex role that this natural product plays in fungal cell development.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Jun Takanishi
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Shihori Asai
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Takahiro Masuya
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| |
Collapse
|
11
|
Borade BR, Nomula R, Gonnade RG, Kontham R. Fe(III)-Catalyzed Diastereoselective Friedel-Crafts Alkylation-Hemiketalization-Lactonization Cascade for the Synthesis of Polycyclic Bridged 2-Chromanol Lactones. Org Lett 2019; 21:2629-2633. [PMID: 30924674 DOI: 10.1021/acs.orglett.9b00614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unprecedented Fe(III)-catalyzed Friedel-Crafts alkylation-hemiketalization-lactonization cascade of electron-rich hydroxy arenes and distinctively functionalized unsaturated 4-keto esters is developed for the construction of polycyclic bridged 2-chromanol lactones. Following this simple and facile protocol, a broad range of products was prepared in good to excellent yields as a single diastereomer. An unusual conglomerate (enantiomerically pure polymorph) of 3ac is reported along with the absolute stereochemistry, and the remaining products were rigorously confirmed by single-crystal X-ray analysis and analogy.
Collapse
Affiliation(s)
- Balasaheb R Borade
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | | | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| | - Ravindar Kontham
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India
| |
Collapse
|
12
|
Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 2019; 37:107344. [PMID: 30738916 DOI: 10.1016/j.biotechadv.2019.01.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
The Basidiomycota constitutes the second largest higher taxonomic group of the Fungi after the Ascomycota and comprises over 30.000 species. Mycelial cultures of Basidiomycota have already been studied since the 1950s for production of antibiotics and other beneficial secondary metabolites. Despite the fact that unique and selective compounds like pleuromutilin were obtained early on, it took several decades more until they were subjected to a systematic screening for antimicrobial and anticancer activities. These efforts led to the discovery of the strobilurins and several hundreds of further compounds that mainly constitute terpenoids. In parallel the traditional medicinal mushrooms of Asia were also studied intensively for metabolite production, aimed at finding new therapeutic agents for treatment of various diseases including metabolic disorders and the central nervous system. While the evaluation of this organism group has in general been more tedious as compared to the Ascomycota, the chances to discover new metabolites and to develop them further to candidates for drugs, agrochemicals and other products for the Life Science industry have substantially increased over the past decade. This is owing to the revolutionary developments in -OMICS techniques, bioinformatics, analytical chemistry and biotechnological process technology, which are steadily being developed further. On the other hand, the new developments in polythetic fungal taxonomy now also allow a more concise selection of previously untapped organisms. The current review is dedicated to summarize the state of the art and to give an outlook to further developments.
Collapse
|