1
|
Ren J, He L, Li J, Wang N, Long X, Yang J, Li K. A General Medium-to-Large Sized Ring Synthesis Enabled by Copper-Catalyzed Difluoroalkylamidation Cyclization of Alkynes. Org Lett 2025. [PMID: 40343464 DOI: 10.1021/acs.orglett.5c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
This paper describes a novel coordinating activation strategy that enables the synthesis of medium-to-large sized rings (11-17 members) via an unprecedented difluoroalkylamidation cyclization of alkynes. This method provides an efficient platform for accessing skeleton-diverse difluoroalkyl-containing cyclic enamides with complete regio- and stereoselectivity. The protocol features broad substrate compatibility, functional group tolerance, and ease of use at dilution concentrations (50 mM) that are not high. Moreover, the synthetic utility of this difunctional cyclization is underscored by its application in the late-stage modification of complex molecules. Additionally, the click reaction facilitates the derivation of alkynyl-substituted cyclization products, demonstrating the methodology's potential in biological sciences.
Collapse
Affiliation(s)
- Jing Ren
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Linfeng He
- Department of Liver Transplantation Center and Institute of Organ Transplantation, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jinlong Li
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Ning Wang
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Xinyu Long
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jiayin Yang
- Department of Liver Transplantation Center and Institute of Organ Transplantation, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Kaizhi Li
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| |
Collapse
|
2
|
Zhou H, Lunic D, Sanosa N, Sampedro D, Funes‐Ardoiz I, Teskey CJ. Merging Hydrogen-Atom-Transfer and the Truce-Smiles Rearrangement for Synthesis of β-Arylethylamines from Unactivated Allylsulfonamides. Angew Chem Int Ed Engl 2025; 64:e202418869. [PMID: 40019754 PMCID: PMC12051773 DOI: 10.1002/anie.202418869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Arylethylamines are crucial elements in pharmaceutical molecules, making methods for their synthesis highly significant. The Truce-Smiles rearrangement is a well-developed strategy to synthesize arylethylamine motifs via aryl migration. However, most examples require amide substrates to activate the alkene to attack by a radical precursor. This strategy both limits the product scope to amide-containing compounds as well as necessitating the incorporation of specific functional groups arising from the initial radical addition. In this work, we overcome these limitations, delivering a hydrogen-atom transfer from a cobalt catalyst to unactivated alkenes to yield β-arylethylamines with simple alkyl chains. DFT studies reveal that increasing the steric hindrance in at least one of the ortho positions on the migrating aromatic group promotes ipso over ortho addition, a selectivity that contrasts with previous methods.
Collapse
Affiliation(s)
- Hanqi Zhou
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- Institute of Organic ChemistryTU BraunschweigHagenring 3038106BraunschweigGermany
| | - Danijela Lunic
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | - Nil Sanosa
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | - Diego Sampedro
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | - Ignacio Funes‐Ardoiz
- Department of ChemistryInstituto de Investigación en Química de la Universidad de La Rioja (IQUR)Universidad de La RiojaMadre de Dios 5326004LogroñoSpain
| | | |
Collapse
|
3
|
Dong DQ, Yang SH, Wu P, Wang JZ, Min LH, Yang H, Zhou MY, Wei ZH, Ding CZ, Wang YL, Gao JH, Wang SJ, Wang ZL. Copper-Catalyzed Difluoroalkylation Reaction. Molecules 2022; 27:molecules27238461. [PMID: 36500553 PMCID: PMC9740754 DOI: 10.3390/molecules27238461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics, we classify these difluoroalkylation reactions into three types.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shao-Hui Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Pei Wu
- Shandong Academy of Pesticide Sciences, Beiyuan Street, Jinan 250033, China
- Correspondence: (P.W.); (Z.-L.W.)
| | - Jin-Zhi Wang
- Tancheng County Agricultural Technology Popularization Center, Linyi 276100, China
| | - Ling-Hao Min
- Qingdao Zhongda Agritech Co., Ltd., Qingdao 266109, China
| | - Hao Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng-Yu Zhou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ze-Hui Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Cai-Zhen Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Hui Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shu-Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (P.W.); (Z.-L.W.)
| |
Collapse
|
4
|
Yang Z, Chen L, Sun Q, Guo M, Wang G, Zhao W, Tang X. Tetrahydroxydiboron and Nickel Chloride Cocatalyzed Rapid Radical Cyclization toward Pyrrolizidine and Indolizidine Alkaloids. J Org Chem 2022; 87:3788-3793. [PMID: 35188782 DOI: 10.1021/acs.joc.1c02874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel tetrahydroxydiboron and nickel chloride cocatalyzed radical cyclization cascade with a broad substrate scope and an ultrashort reaction time was developed. The mechanistic investigation indicated that the reaction might involve a homocleavage of tetrahydroxydiboron and nickel hydride intermediates. This approach enables the simple and efficient synthesis of a series of heteropolycycles.
Collapse
Affiliation(s)
- Zequn Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Longhui Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Qi Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management Chongqing Vocational Institute of Safety Technology Chongqing People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang People's Republic of China
| |
Collapse
|
6
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
7
|
Li Y, Sun N, Zhang C, Hao M. Base‐Promoted
Formylation and
N
‐Difluoromethylation
of Azaindoles with Ethyl Bromodifluoroacetate as a Carbon Source. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Ning Sun
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Cai‐Lin Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Meng Hao
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| |
Collapse
|
8
|
Zhou S, Hou X, Yang K, Guo M, Zhao W, Tang X, Wang G. Direct Synthesis of N-Difluoromethyl-2-pyridones from Pyridines. J Org Chem 2021; 86:6879-6887. [PMID: 33905251 DOI: 10.1021/acs.joc.1c00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method for the synthesis of N-difluoromethyl-2-pyridones was described. This protocol enables the synthesis of N-difluoromethyl-2-pyridones from readily available pyridines using mild reaction conditions that are compatible with a wide range of functional groups. The preliminary mechanistic study revealed that N-difluoromethylpyridinium salts were the key intermediates to complete this conversion.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
9
|
Iqbal N, Lee DS, Jung H, Cho EJ. Synergistic Effects of Boron and Oxygen Interaction Enabling Nickel-Catalyzed Exogenous Base-Free Stereoselective Arylvinylation of Alkynes through Vinyl Transposition. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Naeem Iqbal
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Da Seul Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hoimin Jung
- Department of Chemistry, Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Gao B, Ni Y, Liu X, Jiang T, Yan Q, Yang R, Zhang X. Copper‐Catalyzed Difluoroalkylation‐Thiolation of Alkenes Promoted by Na
2
S
2
O
5. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bao Gao
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Yingjie Ni
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Xiaojun Liu
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Tao Jiang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Qian Yan
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Ruiting Yang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Xiuli Zhang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 PR China
| |
Collapse
|
11
|
Zhou S, Sun ZY, Zhu K, Zhao W, Tang X, Guo M, Wang G. Metal-Free Difunctionalization of Pyridines: Selective Construction of N-CF 2H and N-CHO Dihydropyridines. Org Lett 2021; 23:2205-2211. [PMID: 33635677 DOI: 10.1021/acs.orglett.1c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kongying Zhu
- Nuclear Magnetic Resonance Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
12
|
Zhang P, Zhang T, Cai P, Jiang B, Tu S. Study on tert-Butyl Radical-Initiated 1,2-Alkynyl Migration. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang X, Lei J, Li G, Meng J, Li C, Li J, Sun K. Synthetic methods for compounds containing fluoro-lactam units. Org Biomol Chem 2020; 18:9762-9774. [PMID: 33237116 DOI: 10.1039/d0ob02168g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In recent years, considerable attention has been devoted to the exploration of novel synthetic methods for fluoro-lactams due to their significant biological and pharmaceutical activities. This review summarizes recently established strategies for synthesizing fluorine-substituted lactams, including fluoro-β-lactams, fluoro-γ-lactams, and fluoro-δ-lactams. Additionally, the reaction scopes, limitations, and mechanisms are discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering, YanTai University, Yantai, 264005, Shandong, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhu S, Yang H, Jiang A, Zhou B, Han Y, Yan C, Shi Y, Hou H. Copper-Catalyzed Bromodifluoroacetylative Cyclization of Enynes. J Org Chem 2020; 85:15667-15675. [PMID: 33176101 DOI: 10.1021/acs.joc.0c02114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A copper-catalyzed bromodifluoroacetylative cyclization reaction is described. The treatment of bromodifluoroacete derivatives by CuI and B2Pin2 enables difluoroalkyl radical generation and triggers the radical addition/cyclization/bromination sequences. Bromodifluoroacetyl-derived ester, amide, and ketone were compatible and gave various vinyl C-Br bonds containing functionalized heterocycles in good yields.
Collapse
Affiliation(s)
- Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Haibo Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Along Jiang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Bing Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Chen YJ, Qu YL, Li X, Wang CC. Recent advances in 1,4-functional group migration-mediated radical fluoroalkylation of alkenes and alkynes. Org Biomol Chem 2020; 18:8975-8993. [PMID: 33135042 DOI: 10.1039/d0ob01649g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, the combination of radical fluoroalkylation of alkenyl or alkynyl moieties and 1,4-functional group migration (1,4-FGM) has emerged as a powerful strategy for the synthesis of fluorine-containing compounds. In this article, some representative reactions of 1,4-FGM-mediated radical fluoroalkylation of N-(arylsulfonyl)acrylamides, tertiary alcohol-containing alkynes, tertiary alcohol-containing alkenes and intermolecular 1,4-FGM-type substrates have been discussed based on the types of substrates.
Collapse
Affiliation(s)
- Ya-Jing Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ya-Li Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, PR China.
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shanxi, PR China
| | - Chuan-Chuan Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, PR China. and Faculty of Science, Henan University of Animal Husbandry and Economy, No. 2 Yingcai Street, Zhengzhou 450044, Henan, PR China
| |
Collapse
|
16
|
Hou X, Zhou S, Li Y, Guo M, Zhao W, Tang X, Wang G. Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Org Lett 2020; 22:9313-9318. [DOI: 10.1021/acs.orglett.0c03540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yuli Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Sun ZY, Zhou S, Yang K, Guo M, Zhao W, Tang X, Wang G. Tetrahydroxydiboron-Promoted Radical Addition of Alkynols. Org Lett 2020; 22:6214-6219. [DOI: 10.1021/acs.orglett.0c02367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
18
|
Liu C, Jiang Q, Lin Y, Fang Z, Guo K. C- to N-Center Remote Heteroaryl Migration via Electrochemical Initiation of N Radical by Organic Catalyst. Org Lett 2020; 22:795-799. [PMID: 31922422 DOI: 10.1021/acs.orglett.9b04141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein an exogenous oxidant- and metal-free electrochemical heteroaryl migration triggered by N radicals to construct new N-C bonds was developed. This methodology features a high atom economy and utilization rate of energy, and it is insensitive to water and air. Moreover, a user-friendly undivided cell was employed. The use of an organic catalyst makes it more efficient, green, and practical.
Collapse
Affiliation(s)
- Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Qiang Jiang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yang Lin
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China.,State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
19
|
Gao X, Li C, Yuan Y, Xie X, Zhang Z. Visible-light-induced intramolecular radical cascade of α-bromo-N-benzyl-alkylamides: a new strategy to synthesize tetracyclic N-fused indolo[2,1-a]isoquinolin-6(5H)-ones. Org Biomol Chem 2020; 18:263-271. [PMID: 31829389 DOI: 10.1039/c9ob02294e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polycyclic indole scaffolds are ubiquitous in pharmaceuticals and natural products and in materials science. Here, we present a visible-light-initiated intramolecular aryl migration/desulfonylation/cyclization cascade reaction for the synthesis of tetracyclic indolo[2,1-a]isoquinolin-6(5H)-ones. This protocol not only exhibited a wide substrate scope but also provided a mild route to access a variety of tetracyclic N-fused indoles.
Collapse
Affiliation(s)
- Xiaoshuang Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
20
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
21
|
Johnson S, Kovács E, Greaney MF. Arylation and alkenylation of activated alkyl halides using sulfonamides. Chem Commun (Camb) 2020; 56:3222-3224. [DOI: 10.1039/d0cc00220h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A variety of quaternary aryl amino acid derivatives can be synthesised using tandem SN2/Smiles rearrangement chemistry involving aryl sulfonamides and α-chloro carbonyl compounds.
Collapse
Affiliation(s)
- Stuart Johnson
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | - Ervin Kovács
- School of Chemistry
- University of Manchester
- Manchester M13 9PL
- UK
| | | |
Collapse
|
22
|
Zhao Q, Hao WJ, Shi HN, Xu T, Tu SJ, Jiang B. Photocatalytic Annulation–Alkynyl Migration Strategy for Multiple Functionalization of Dual Unactivated Alkenes. Org Lett 2019; 21:9784-9789. [DOI: 10.1021/acs.orglett.9b04018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hao-Nan Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
23
|
Chen G, Li C, Peng J, Yuan Z, Liu P, Liu X. Silver-promoted decarboxylative radical addition/annulation of oxamic acids with gem-difluoroolefins: concise access to CF 2-containing 3,4-dihydroquinolin-2-ones. Org Biomol Chem 2019; 17:8527-8532. [PMID: 31512696 DOI: 10.1039/c9ob01236b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described is a silver-promoted decarboxylative radical addition/annulation of oxamic acids with gem-difluoroalkenes. This reaction proceeded under mild reaction conditions with broad functional group compatibility, enabling the convenient synthesis of various structurally diverse CF2-containing 3,4-dihydroquinolin-2-ones that might find applications in medical chemistry.
Collapse
Affiliation(s)
- Guojun Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Qu CH, Song GT, Xu J, Yan W, Zhou CH, Li HY, Chen ZZ, Xu ZG. Merging Visible Light with Cross-Coupling: The Photochemical Direct C–H Difluoroalkylation of Imidazopyridines. Org Lett 2019; 21:8169-8173. [DOI: 10.1021/acs.orglett.9b02487] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuan-Hua Qu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Gui-Ting Song
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhong-Zhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhi-Gang Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
25
|
Liu C, Yang YJ, Dong JY, Zhou MD, Li L, Wang H. Copper/B 2pin 2-Catalyzed Difluoroalkylation of Methylenecyclopropanes with Bromodifluorinated Acetates and Acetamides: One-Pot Synthesis of CF 2-Containing Dihydronaphthalene Derivatives. J Org Chem 2019; 84:9937-9945. [PMID: 31347848 DOI: 10.1021/acs.joc.9b01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel copper/B2pin2-catalyzed difluoroalkylation of methylenecyclopropanes with bromodifluorinated acetates and acetamides via a tandem radical process involving ring-opening/intramolecular cyclization has been reported. This protocol is not only tolerated to a diverse range of substrates but also applicable to the synthesis of useful difluoromethylated compounds. Moreover, the reaction could be performed on a gram scale with a high yield, which opens up the possibility for practical applications.
Collapse
Affiliation(s)
- Chuang Liu
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Yan-Jie Yang
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Jun-Ying Dong
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Lei Li
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - He Wang
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| |
Collapse
|
26
|
Huang K, Lu P, Wang Y. BF3-promoted reactions between aryl aldehydes and 3-diazoindolin-2-imines: Access to 2-amino-3-arylindoles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Yang Y, Yuan F, Ren X, Wang G, Zhao W, Tang X, Guo M. Copper-Catalyzed Oxydifluoroalkylation of Hydroxyl-Containing Alkenes. J Org Chem 2019; 84:4507-4516. [DOI: 10.1021/acs.joc.9b00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Fangyuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangwei Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
28
|
Alkene Carboarylation through Catalyst‐Free, Visible Light‐Mediated Smiles Rearrangement. Chemistry 2019; 25:1927-1930. [DOI: 10.1002/chem.201805712] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Indexed: 11/07/2022]
|