1
|
Han L, Zhou H, Hou J, Shi X, Li Q. The formation reaction of a carbon-carbon bond promoted by Eosin-Y under visible light. Org Biomol Chem 2025; 23:3741-3799. [PMID: 40159809 DOI: 10.1039/d5ob00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with traditional methods, visible light for the photoredox catalysis of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Therefore, the formation reaction of a C-C bond can be achieved by activating these molecules with visible light, which can effectively modify the structure of these compounds and obtain compounds with multiple structures and functions. At present, this research has become an important research field in organic synthesis. Eosin-Y, a cheap and widely-used organic dye, has been employed as an economically and environmentally friendly substitute for many transition-metal-based photocatalysts. In recent years, it has gained much more attention due to its ease of handling and eco-friendliness, and it has great potential for applications in visible-light-mediated organic synthesis. This article reviews the research results on the formation of carbon-carbon bonds promoted by the organic photocatalyst Eosin-Y under visible light in recent years, and discusses representative examples and their different mechanistic pathways (such as SET, HAT, and energy transfer).
Collapse
Affiliation(s)
- Lirong Han
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Hui Zhou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jinsong Hou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaohao Shi
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Qinghan Li
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Bai Y, Qi X, Li H, Ban Y, Zhao R, Wang Y, Zhang J, Sun T, Gao G. Pd-catalyzed domino Heck cyclization/cross-coupling of indoles with β-chlorovinyl ketones: synthesis of furan-bearing indolo[2,1- α]isoquinolines with antifungal activity. Org Biomol Chem 2025; 23:3307-3313. [PMID: 40062867 DOI: 10.1039/d5ob00165j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Herein, a palladium-catalyzed cross-coupling cascade cyclization of alkene-tethered indoles and (E)-β-chlorovinyl ketones, providing access to various furan-bearing indolo[2,1-α]isoquinolines, is reported. The reaction enables the rapid construction of one C-O bond and two C-C bonds to form bis-heterocycles. Furthermore, these furan-bearing indolo[2,1-α]isoquinolines exhibited certain antifungal activity in vitro. Notably, bis-heterocycles 3da (EC50 = 16.5014 μg mL-1) against Botryosphaeria dothidea and 3ar (EC50 = 18.2751 μg mL-1) against Rhizoctonia solani were identified to have good inhibitory effects.
Collapse
Affiliation(s)
- Yongqi Bai
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Xingrui Qi
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Hanjing Li
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Yihui Ban
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Rong Zhao
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Yian Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Jingli Zhang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Taolei Sun
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guanbin Gao
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Sun Z, Zhang XS, Bian SW, Zhang C, Han YP, Liang YM. New synthetic approaches for the construction of difluoromethylated architectures. Org Biomol Chem 2025; 23:3029-3075. [PMID: 40013736 DOI: 10.1039/d4ob02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Fluorinated compounds play a vital role in the fields of agrochemicals, pharmaceuticals, and materials science because of their unique lipophilicity, permeability, and metabolic stability. Among all such appealing fluorine-containing functional groups, the difluoromethyl group has attracted considerable attention owing to its outstanding chemical and physical properties. It has been used as a lipophilic hydrogen bond donor and a bioisostere of thiol, hydroxy, or amino groups. The excellent properties of the CF2H group have motivated many chemists to develop effective strategies for the selective incorporation of the CF2H group into target molecules. Over the past decades, a variety of efficient, atom-economical, and facile methods have been discovered for the difluoromethylation of organic substrates. This review summarizes the developments in different types of difluoromethylations, which could be classified into the following categories: radical difluoromethylation, transition metal-catalyzed difluoromethylation, and nucleophilic and electrophilic difluoromethylation.
Collapse
Affiliation(s)
- Zhou Sun
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Xue-Song Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shao-Wei Bian
- Tianjin Eco-Environmental Monitoring Center, Tianjin, China
| | - Chun Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Zhang D, Sun Y, Wang G, Liu Y, Ni C, Ji Q, Xu X, Fang Z. Preparation of Difluoromethylated Benzothiophene by Visible-Light-Mediated Alkyne Difunctionalization Reaction. J Org Chem 2024; 89:13367-13372. [PMID: 39240042 DOI: 10.1021/acs.joc.4c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
An efficient method for the preparation of difluoromethylated benzothiophenes via visible-light-mediated alkyne difunctionalization was developed. In this method, inexpensive sodium difluoromethanesulfinate (HCF2SO2Na) was used as the fluorine source, and a variety of benzothiophene derivatives were obtained in moderate to excellent yield under mild reaction conditions. Moreover, the reaction operation is simple and easy to scale up.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Yu Sun
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Ganwen Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Ying Liu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Qingzhi Ji
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Xiaojuan Xu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
5
|
Hong Y, Qiu J, Wu Z, Xu S, Zheng H, Zhu G. Tetrafluoroisopropylation of alkenes and alkynes enabled by photocatalytic consecutive difluoromethylation with CF 2HSO 2Na. Nat Commun 2024; 15:5685. [PMID: 38971849 PMCID: PMC11227567 DOI: 10.1038/s41467-024-50081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Direct assembly of complex fluorinated motifs from simple fluorine sources is an attractive frontier of synthetic chemistry. Reported herein is an unconventional protocol for achieving tetrafluoroisopropylation by using commercially available CF2HSO2Na as a convenient source of the tetrafluoroisopropyl [(CF2H)2CH] group, which finds widespread applications in life science and material science. Visible-light-induced hydrotetrafluoroisopropylation of alkenes and carbotetrafluoroisopropylation of alkynes have been thus developed. Various structurally diverse α-tetrafluoroisopropyl carbonyls and cyclopentanones are selectively constructed under mild conditions. A photocatalytic triple difluoromethylation cascade, driven by consecutive reductive radical/polar crossover processes, leads to the direct assembly of a tetrafluoroisopropyl moiety from CF2HSO2Na. This C1-to-C3 fluoroalkylation protocol provides a practical strategy for the rapid construction of polyfluorinated compounds that are otherwise difficult to access, thus significantly enhancing the boundary of fluoroalkylation chemistry.
Collapse
Affiliation(s)
- Yuwei Hong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Jiayan Qiu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zhenzhen Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Sangxuan Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China.
| |
Collapse
|
6
|
Dai P, Ma Z, Yu X, Chen W, Teng P, Li Y, Xu Z, Xia Q, Liu Z, Zhang W. 3D-QSAR-Directed Synthesis of Halogenated Coumarin-3-Hydrazide Derivatives: Unveiling Their Potential as SDHI Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11938-11948. [PMID: 38752540 DOI: 10.1021/acs.jafc.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 μg/mL), 6ae (0.32 μg/mL), and 6ah (0.48 μg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 μg/mL). Furthermore, compounds 4ak (0.88 μg/mL), 6ae (0.61 μg/mL), 6ah (0.65 μg/mL), and 6ak (1.11 μg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 μg/mL) and the broad-spectrum fungicide carbendazim (2.15 μg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihua Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Yu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Xu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewen Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
8
|
Dai P, Jiao J, Li Y, Teng P, Wang Q, Zhu Y, Zhang W. Novel 5-Sulfonyl-1,3,4-thiadiazole-Substituted Flavonoids as Potential Bactericides and Fungicides: Design, Synthesis, Three-Dimensional Quantitative Structure-Activity Relationship Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6672-6683. [PMID: 38481361 DOI: 10.1021/acs.jafc.3c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Flavonoids, ubiquitous natural products, provide sources for drug discovery owing to their structural diversity, broad-spectrum pharmacological activity, and excellent environmental compatibility. To develop antibacterial and antifungal agents with novel mechanisms of action and innovative structures, a series of novel 5-sulfonyl-1,3,4-thiadiazole-substituted flavonoids were designed and synthesized, and their biological activities against seven agriculturally common phytopathogenic microorganisms were evaluated. The results of the antimicrobial bioassay showed that most of the target compounds displayed excellent inhibitory effects against Xanthomonas oryzae, Rhizoctonia solani, and Colletotrichum orbiculare. Compounds 1, 3, 7, 9, 13, and 14 exhibited remarkable antibacterial activity against X. oryzae pv. oryzae with EC50 values below 10 μg/mL, which were superior to bismerthiazol (70.89 μg/mL). Compound 2 (EC50 = 0.41 μg/mL) displayed the most effective inhibitory potency against R. solani in vivo, comparable protective effects with the positive control carbendizam. Preliminary mechanistic studies indicated that compound 2 induced disordered entanglement of hyphae, shrinkage of hyphal surfaces, extravasation of cellular contents, and vacuole swelling and rupture, which disrupted normal hyphal growth. Subsequently, compounds 35-53 with good antifungal activity were designed and synthesized based on reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) models. Compound 49 showed high efficacy and superior antifungal activity against R. solani, with an EC50 value of 0.28 μg/mL and a half-maximal effective concentration of 0.46 μg/mL.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuchuan Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Cui Y, Xu W, Yang W, Meng F. Access to CF 2COR-Containing Quinazolinones via Visible-Light-Induced Domino Difluoroalkylation/Cyclization of N-Cyanamide Alkenes. Org Lett 2024; 26:2119-2123. [PMID: 38436251 DOI: 10.1021/acs.orglett.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A green and highly efficient visible-light-induced radical cascade difluoroalkylation/cyclization reaction of N-cyanamide alkenes has been developed. A variety of CF2COR-containing quinazolinones have been obtained in high yields with cheap non-metallic 4CzIPN as the photocatalyst. This photocatalytic reaction provides rapid, facile, and practical access to valuable polycyclic quinazolinone, and it is amenable to the gram scale.
Collapse
Affiliation(s)
- Yangyang Cui
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen Xu
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenchao Yang
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fei Meng
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
11
|
Song H, Li J, Zhang Y, Chen K, Liu L, Zhang J, Duan XH, Hu M. Photoredox Catalysis-Enabled C-H Difluoromethylation of Heteroarenes with Pentacoordinate Phosphorane as the Reagent. J Org Chem 2023; 88:12013-12023. [PMID: 37549379 DOI: 10.1021/acs.joc.3c01336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Difluoromethylated heterocyclic compounds have found broad applications in numerous bioactive molecules. Herein, we report photoredox catalysis-induced direct C-H difluoromethylation of heterocycles by using bis(difluoromethyl) pentacoordinate phosphorane (PPh3(CF2H)2, 1) as the reagent. A variety of heterocycles, such as quinoxalin-2(1H)-one, thiophene, indole, and coumarin, are readily tailored with a difluoromethyl group. The method is featured as transition-metal-free by using an organic compound Erythrosin B as the catalyst and O2 as the oxidant.
Collapse
Affiliation(s)
- Huanhuan Song
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingwen Li
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yinbin Zhang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Ke Chen
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junjie Zhang
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Wang J, Luo Z, Wu Y, Tang Y, Yang X, Tsui GC. Copper-Catalyzed Visible-Light-Induced Allylic Difluoromethylation of Unactivated Alkenes Using Difluoroacetic Acid. Org Lett 2023; 25:1045-1049. [PMID: 36752311 DOI: 10.1021/acs.orglett.3c00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We herein describe a straightforward allylic difluoromethylation reaction of unactivated alkenes. Compared to cross-couplings of prefunctionalized allylic substrates for the construction of allylic CF2H bonds, this reaction employs readily available alkenes as substrates under mild conditions. Difluoroacetic acid is used as an inexpensive and easy-to-handle source of CF2H radical under visible light irradiation with PIDA. The copper catalyst plays an important role of diverting the reaction pathway toward allylic difluoromethylation as opposed to previously found hydrodifluoromethylation.
Collapse
Affiliation(s)
- Jinlian Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ziwei Luo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yili Wu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yihan Tang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Xinkan Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
13
|
Zheng J, Wu Y, Cao D, Song S, Yang Y, Huang L, Chen D. Direct Difluoromethylation of 2-Arylidenindan-1,3-dione by Photoredox-catalyzed Radical Addition. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Prajapati VD, Prajapati RV, Purohit VB, Avalani JR, Sapariya NH, Kamani RD, Karad SC, Raval DK. N‐Chlorosuccinimide Mediated Regioselective Sulfenylation and Halogenation of 4
H
‐Pyrido[1,2‐
a
]pyrimidin‐4‐ones at Room Temperature. ChemistrySelect 2022. [DOI: 10.1002/slct.202204126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vaibhav D. Prajapati
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar- 388120 Gujarat India
| | - Ronak V. Prajapati
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar- 388120 Gujarat India
| | - Vishal B. Purohit
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)- International Research Agenda Lodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Jemin R. Avalani
- Shri A. N. Patel P. G. Institute of Science & Research Anand 388001, Gujarat India
| | | | - Ronak D. Kamani
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar- 388120 Gujarat India
| | - Sharad C. Karad
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar- 388120 Gujarat India
| | - Dipak K. Raval
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar- 388120 Gujarat India
| |
Collapse
|
15
|
Zhou K, Xia S, Liu Y, Chen Z. An electrochemical tandem Michael addition, azidation and intramolecular cyclization strategy for the synthesis of imidazole derivatives. Org Biomol Chem 2022; 20:7840-7844. [PMID: 36172809 DOI: 10.1039/d2ob01501c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical-oxidation-induced intramolecular annulation used for the synthesis of imidazole was developed under undivided electrolytic conditions. In an undivided cell, amines, alkynes and azides could smoothly participate in the transformation to furnish a variety of substituted imidazoles through the tandem Michael addition/azide/cycloamine reaction. The reaction could be easily handled and avoided the use of both transition metal catalysts and peroxide reagents, which is in line with the concept of green chemistry.
Collapse
Affiliation(s)
- Kai Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shendan Xia
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yanming Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
16
|
Wang H, Huang Y, Wu Q, Lu J, Xu YL, Chen YY. Visible-Light-Promoted bis(Difluoromethylation)/Cyclization of 2-Vinyloxy Arylalkynes to Prepare Benzofuran Derivatives. J Org Chem 2022; 87:13288-13299. [PMID: 36166821 DOI: 10.1021/acs.joc.2c01938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-promoted difluoromethylation/cyclization of 2-vinyloxy arylalkynes was developed, providing a variety of bis(difluoromethyl)-substituted benzofurans in moderate to good yields. A plausible mechanism involving difluoromethyl radical cascade cyclization and solvent-promoted ionic addition was proposed. This protocol has the advantages of having mild reaction conditions, simple operation, and good functional group tolerance.
Collapse
Affiliation(s)
- Huan Wang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yao Huang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Qiaoyan Wu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Jun Lu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Li Xu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Yan Chen
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
17
|
Chen Z, Huang X, Sun J, Liu Y, Li Z. Metal‐free Cascade Radical Cyclization of
N
‐Methylacrylyl‐2‐phenylbenzimidazole: Construction of Aryldifluoromethylated Benzimidazole[2,1‐
a
]
iso
‐Quinoline‐6(5
H
)‐ketone. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Yanmin Liu
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences Zhejiang University of Technology. Chao Wang Road 18th 310014 Hangzhou P. R. China
| |
Collapse
|
18
|
Lin D, Krishnamurti V, Prakash S. Visible Light Mediated Metal‐free Chlorodifluoromethylation of Arenes and Heteroarenes via a Hypervalent Iodine EDA Complex. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Lin
- University of Southern California Department of Chemistry and Loker Hydrocarbon Research Institute UNITED STATES
| | - Vinayak Krishnamurti
- University of Southern California Department of Chemistry and Loker Hydrocarbon Research Institute UNITED STATES
| | - Surya Prakash
- University of Southern California Loker Hydrocarbon Research Institute 837 Bloom WalkUniversity Park 90089-1661 Los Angeles UNITED STATES
| |
Collapse
|
19
|
Sun J, Li Z, Huang X, Ke Z, Chen Z. Silver-catalyzed C-3 arylthiodifluoromethylation and aryloxydifluoromethylation of coumarins. Org Biomol Chem 2022; 20:4421-4426. [PMID: 35583266 DOI: 10.1039/d2ob00568a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile silver-catalyzed oxidative decarboxylation of arylthiodifluoroacetic acids or aryloxydifluoroacetic acids with coumarins/quinoxalin-2(1H)-ones was developed. This transformation provided a series of C-3 aryloxydifluoromethylated or arylthiodifluoromethylated coumarins/quinoxalin-2(1H)-ones containing various functional groups in moderate to good yields, featuring good functional group tolerance, easily accessible starting materials and operational simplicity.
Collapse
Affiliation(s)
- Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
20
|
Wang L, Zhang Y, Zhu T, Wu J. Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF 2H-Containing Dibenzazepines. J Org Chem 2022; 87:7551-7556. [PMID: 35549257 DOI: 10.1021/acs.joc.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced radical difluoromethylarylation via tandem addition-cyclization of alkynes with easily available [bis(difluoroacetoxy)iodo]benzene is accomplished, providing a straightforward and practical route for the construction of difluoromethylated dibenzazepines. Various sensitive functional groups can be compatible under photoinduced conditions. Mechanism investigation reveals that this transformation is initiated by the addition of alkyne with difluoromethyl radical, generated in situ from [bis(difluoroacetoxy)iodo]benzene.
Collapse
Affiliation(s)
- Luoyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
21
|
Zhou T, Liu R, Wang X, Rui M, Zhao X, Lu K. Visible‐light Induced Ipso‐Difluoromethylation of N‐arylpropiolamides to Synthesize 3‐difluoromethyl Spiro[4.5]trienones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ting Zhou
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Ruiyue Liu
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Xiuxiu Wang
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Mingyang Rui
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Xia Zhao
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Kui Lu
- Tianjin University of Science & Technology Department of Pharmaceutical Engineering No.29, 13th AvenueTianjin Economic and Technological Development Area 300457 Tianjin CHINA
| |
Collapse
|
22
|
Wang X, Liu R, Zhang S, Zhou T, Zhao X, Lu K. Visible-light-induced Radical Cyclization of N-allylbenzamide with [Bis(difluoroacetoxy)iodo]benzene to Difluoromethylated Dihydroisoquinolinones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Dai P, Li Y, Chen Y, Jiao J, Wang Q, Li C, Gu Y, Zhang Y, Xia Q, Zhang WH. (Fluoromethylsulfonyl)methylation of Quinoxalinones Using NaSO2CH2F for C–F Bond Cleavage. Org Lett 2022; 24:1357-1361. [DOI: 10.1021/acs.orglett.2c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, U.K
| | - Yanbin Zhang
- Department of Chemistry, National University of Singapore, 117545 Singapore
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Chen Z, Sun J, Ke Z, Huang X, Li Z. Silver-catalyzed stereoselective C-4 arylthiodifluoromethylation of coumarin-3-carboxylic acids via a double decarboxylative strategy. Org Chem Front 2022. [DOI: 10.1039/d1qo01609a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile silver-catalyzed dual decarboxylation of arylthio-difluoroacetic acid with coumarin-3-carboxylic acids/chromone-3-carboxylic acids was developed.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
25
|
Feng J, Jia X, Zhang S, Lu K, Cahard D. State of knowledge in photoredox-catalysed direct difluoromethylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00551d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The combination of visible light photoredox catalysis with direct difluoromethylation has allowed the synthesis of a large choice of CF2H-containing value-added molecules under very mild reaction conditions.
Collapse
Affiliation(s)
- Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xiaodong Jia
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Shuyue Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
26
|
Guo C, Han X, Li X, Diao Z, Li X, Dong Y. Direct C−H Difluoroalkylation of Heteroarenes with Difluoroalkyl Carboxylic Acids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chunfang Guo
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
- Shandong Vocational College of Light Industry Zhoucun Mishan Road Zibo 255300 P. R. China
| | - Xuliang Han
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| | - Xiangye Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| | - Zhengzhen Diao
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 P. R. China
| |
Collapse
|
27
|
Dai P, Li C, Li Y, Zhu Y, Teng P, Gu Y, Zhang W. Direct Difluoromethylation of Heterocycles through Photosensitized Electron Transfer. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Chenxiao Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yuchuan Zhu
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yu‐Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY United Kingdom, UK
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science College of Sciences Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
28
|
Zeng P, Huang X, Tang W, Chen Z. Copper-catalyzed cascade radical cyclization of alkynoates: construction of aryldifluoromethylated coumarins. Org Biomol Chem 2021; 19:10223-10227. [PMID: 34806739 DOI: 10.1039/d1ob01754c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A mild and simple method is reported for the construction of 3-difluoroarylmethylated coumarins using α,α-difluoroarylacetic acids as an easily handled difluoromethyl source in reaction with ester 3-arylpropiolates under the promotion of copper. The reaction involves a proposed radical-triggered domino decarboxylative aryldifluoromethylation/5-exo cyclization/ester migration process that directly forms Csp2-CF2Ar and C-C bonds with good functional group tolerance.
Collapse
Affiliation(s)
- Piaopiao Zeng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Xiaoxiao Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Wei Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Zhiwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| |
Collapse
|
29
|
|
30
|
Zhu Z, Krishnamurti V, Ispizua-Rodriguez X, Barrett C, Prakash GKS. Chemoselective N- and O-Difluoromethylation of 2-Pyridones, Isoquinolinones, and Quinolinones with TMSCF 2Br. Org Lett 2021; 23:6494-6498. [PMID: 34344153 DOI: 10.1021/acs.orglett.1c02305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An operationally simple protocol for direct N- and O-difluoromethylation of 2-pyridones, quinolinones, and isoquinolinones using commercially available TMSCF2Br is disclosed. The chemoselectivity is modulated by simple variations in temperature, solvent, and strength of the base. Diverse, synthetically relevant functional groups are tolerated, including functional groups that have reported reactivity with TMSCF2Br. Gram-scale reactions to prepare both N- and O-difluoromethyl compounds are included.
Collapse
Affiliation(s)
- Ziyue Zhu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Colby Barrett
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
31
|
Xi J, Wu X, Huang M, Kim JK, Zhang J, Li Y, Wu Y. A visible-light-induced photocatalyst-free approach for C-3 dicarbonyl coumarin production. Chem Commun (Camb) 2021; 57:7308-7311. [PMID: 34223574 DOI: 10.1039/d1cc02399c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and efficient visible-light-induced synthesis of C-3 dicarbonyl coumarins from 3-arylacetylene coumarins without a photocatalyst was reported. This iodide-mediated method exhibited broad substrate scope and good functional group tolerance, and a series of C-3 dicarbonyl coumarins were obtained in moderate to excellent yields. Based on the control experimental results, it was found that the visible-light-induced oxidation might be via both radical and ionic processes. Moreover, some synthesized compounds displayed high sensitivity to hydrogen peroxide (H2O2) with a low detection limit (DL, down to 0.149 μM).
Collapse
Affiliation(s)
- Jinhu Xi
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Liang J, Wang G, Dong L, Pang X, Qin J, Xu X, Shao X, Li Z. CF 2DSO 2Na: An Effective Precursor Reagent for Deuteriodifluoromethylthiolation and Deuteriodifluoromethylation. Org Lett 2021; 23:5545-5548. [PMID: 34231355 DOI: 10.1021/acs.orglett.1c01882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deuteriodifluoromethythio (SCF2D) and deuteriodifluoromethyl (CF2D) are important functional groups in pharmaceutical and agrochemical compounds, and the introduction of these functional groups remains a challenging. We herein report a robust reagent for deuteriodifluoromethylthiolation and deuteriodifluoromethylation. Its potentials were successfully showcased by deuteriodifluoromethylation and deuteriodifluoromethylthiolation of indoles with high-level deuterium incorporation. The reagent also has potential for deuteriodifluoromethylation and deuteriodifluoromethylthiolation of wide range of other natural or synthetic bioactive molecules.
Collapse
Affiliation(s)
- Junqing Liang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Gangao Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefeng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiwen Pang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Qin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
33
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Visible-light induced direct C-H difluoromethylation of quinoxalin-2(1H)-ones by [bis(difluoroacetoxy)iodo]benzene under catalysis-free conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
36
|
Bosveli A, Montagnon T, Kalaitzakis D, Vassilikogiannakis G. Eosin: a versatile organic dye whose synthetic uses keep expanding. Org Biomol Chem 2021; 19:3303-3317. [PMID: 33899893 DOI: 10.1039/d1ob00301a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic dyes, which absorb light in the visible region of the electromagnetic spectrum, offer a lower cost, greener alternative to precious metals in photocatalysis. In this context, the organic dye eosin's uses are currently expanding at a significant rate. For a long time, its action as an energy transfer agent dominated, more recently, however, there has been a growing interest in its potential as an electron transfer agent. In this short review, we highlight some recent (from 2016 onwards) contributions to the field with a focus on the breadth of the reactions eosin can catalyse.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece.
| | | |
Collapse
|
37
|
Ghosh P, Chhetri G, Perl E, Das S. [Bis(trifluoroacetoxy)iodo]benzene Mediated C‐3 Selenylation of Pyrido[1,2‐
a
]Pyrimidin‐4‐Ones Under Ambient Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry University of North Bengal India Darjeeling 734013
| | - Gautam Chhetri
- Department of Chemistry University of North Bengal India Darjeeling 734013
| | - Eliyahu Perl
- University of Cincinnati College of Medicine USA
| | - Sajal Das
- Department of Chemistry University of North Bengal India Darjeeling 734013
| |
Collapse
|
38
|
Yu X, Chen Y, Luo Q, Li Y, Dai P, Xia Q, Liu F, Zhang W. Selective Radical N−H Activation: the Unprecedented Harnessing of Formamide with S
8
for N−S−N Bonds Construction. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Yu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Qian Luo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Wei‐Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
39
|
Lu K, Lei L, Wei Q, Zhou T, Jia X, Li Q, Zhao X. Visible-light induced radical aryldifluoromethylation of N-arylacrylamides by [bis(difluoroacetoxy)iodo]benzene. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Carvalho DR, Christian AH. Modern approaches towards the synthesis of geminal difluoroalkyl groups. Org Biomol Chem 2021; 19:947-964. [PMID: 33406177 DOI: 10.1039/d0ob02374d] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review will cover the importance of and most recent approaches toward geminal difluoroalkyl groups. Transition metal-mediated, photochemical, organocatalytic, and other methods as well as their mechanistic implications will be discussed, with special emphasis on applications to biologically-relevant compounds.
Collapse
Affiliation(s)
- Dayanne R Carvalho
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | - Alec H Christian
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| |
Collapse
|
41
|
Chen X, Li L, Pei C, Li J, Zou D, Wu Y, Wu Y. Visible-Light-Induced Direct Csp 2-H Radical Trifluoroethylation of Coumarins with 1,1,1-Trifluoro-2-iodoethane (CF 3CH 2I). J Org Chem 2021; 86:2772-2783. [PMID: 33492969 DOI: 10.1021/acs.joc.0c02739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we developed the first visible-light-induced direct Csp2-H radical 2,2,2-trifluoroethylation of coumarins with commercially available and cheap reagent CF3CH2I at room temperature. This transformation proceeded smoothly under mild conditions and showed excellent functional group compatibility. The synthetic value of the protocol was also demonstrated by the successful functionalization of several pharmaceuticals.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Linlin Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Congcong Pei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC, Zhengzhou 450052, People's Republic of China
| | - Dapeng Zou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yangjie Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yusheng Wu
- Tetranov Biopharm, LLC, Zhengzhou 450052, People's Republic of China.,Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
42
|
Lu K, Zhou T, Jia X, Wei P, Lei L, Xi X, Liu J, Zhao X. Visible‐Light‐Induced Radical Difluoromethylation of Alkynoates by [bis(Difluoroacetoxy)iodo]benzene to Yield 3‐Difluoromethylated Coumarins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 P.R. China
| | - Ting Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 P.R. China
| | - Xiaodong Jia
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 P.R. China
| | - Peng Wei
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 P.R. China
| | - Lingyu Lei
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 P.R. China
| | - Xiaolan Xi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 P.R. China
| | - Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 P.R. China
| | - Xia Zhao
- College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
43
|
Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Late-stage difluoromethylation: concepts, developments and perspective. Chem Soc Rev 2021; 50:8214-8247. [DOI: 10.1039/d1cs00360g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the conceptual advances that have led to the multiple difluoromethylation processes making use of well-defined CF2H sources.
Collapse
Affiliation(s)
- Jeroen B. I. Sap
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Claudio F. Meyer
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Natan J. W. Straathof
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Ndidi Iwumene
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Christopher W. am Ende
- Pfizer Inc
- Medicine Design, Eastern Point Road, Groton, Connecticut 06340, and 1 Portland Street
- Cambridge
- USA
| | | | - Véronique Gouverneur
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| |
Collapse
|
44
|
Zhao Y, Zhang Y, Liu Y, Zhu T, Wu J. Photoredox-catalyzed direct C(sp 2)–H difluoromethylation of enamides or heterocycles with [bis(difluoroacetoxy)iodo]benzene. Org Chem Front 2021. [DOI: 10.1039/d1qo00995h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox-catalyzed direct C(sp2)–H difluoromethylation of enamides and heterocycles is accomplished by using easily accessible [bis(difluoroacetoxy)iodo]benzene as the CF2H source.
Collapse
Affiliation(s)
- Yun Zhao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yating Liu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
45
|
Synthesis of CF2H-containing isoquinoline-1,3-diones through metal-free, visible-light and air-promoted radical difluoromethylation/cyclization of N-benzamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020; 60:4300-4306. [DOI: 10.1002/anie.202014587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
47
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
48
|
Yamamoto Y, Sakai M, Ishida Y, Yasui T. Synthesis of 1-(Difluoromethyl)alk-1-enes via Palladium-Catalyzed S N2'-Type Substitution Reaction of Difluoromethylated Allylic Phosphates with 1,3-Dicarbonyl Compounds and Imides. J Org Chem 2020; 86:1053-1064. [PMID: 33253567 DOI: 10.1021/acs.joc.0c02538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we report the synthesis of 1-(difluoromethyl)alkenes via a palladium-catalyzed reaction of difluoromethyl-substituted allylic phosphates with 1,3-dicarbonyl compounds using PdCl2(PPh3)2 as a precatalyst. 1,3-Dicarbonyl compounds attacked the γ-carbon with respect to the difluoromethyl group to afford their corresponding SN2'-type substitution products irrespective of the substitution pattern in the allylic phosphates. This regioselectivity has been ascribed to the electronic environment of the unsymmetrical π-allylpalladium intermediate using density functional theory (DFT) calculations. The reaction of difluoromethyl-substituted allylic phosphates with imides was also carried out using a different catalyst system composed of [PdCl(η3-allyl)]2 and di(diphenylphosphino)butane (dppb).
Collapse
Affiliation(s)
- Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Motoji Sakai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yuki Ishida
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
49
|
Menteşe E, Güner A, Polatlı E, Emirik M, Bektaş H, Kahveci B. Synthesis and anticancer activities of some new coumarin derivatives including the triazole ring and their in silico molecular docking studies. Arch Pharm (Weinheim) 2020; 354:e2000284. [PMID: 33146895 DOI: 10.1002/ardp.202000284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023]
Abstract
The synthesis, docking study, and investigation of the anticancer activities of some coumarin derivatives containing the triazole ring are reported in this study. The newly synthesized compounds were screened for their in vitro anticancer activity against the cell lines CRL5807 (human bronchioalveolar carcinoma), CRL5826 (human squamous cell carcinoma), MDA-MB231 (human breast cancer cells), HTB177 (human lung cancer), PC-3 (human prostate adenocarcinoma), PANC-1 (human pancreatic cancer cells), used as cancer cells, and CCD34Lu (normal human lung fibroblasts), used as a healthy cell line. Cytotoxicity effects of the samples were determined by the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay. In silico studies were also performed to explore the binding interactions of the molecules.
Collapse
Affiliation(s)
- Emre Menteşe
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adem Güner
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Elifsu Polatlı
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir, Turkey
| | - Mustafa Emirik
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hakan Bektaş
- Department of Chemistry, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Bahittin Kahveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
50
|
Zhang Y, Ding Y, Chen R, Ma Y. One‐pot Cascade Reaction for the Synthesis of Phenanthridines via Suzuki Coupling/C−H Oxidation/Aromatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi Zhang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University 1139 Shifu Avenue Taizhou, 318000 People's Republic of China
- School of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou 310053 People's Republic of China
| | - Yuxin Ding
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University 1139 Shifu Avenue Taizhou, 318000 People's Republic of China
- School of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou 310053 People's Republic of China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University 1139 Shifu Avenue Taizhou, 318000 People's Republic of China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering Taizhou University 1139 Shifu Avenue Taizhou, 318000 People's Republic of China
- School of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou 310053 People's Republic of China
| |
Collapse
|