1
|
Rai S, Patil BE, Kumari P, Mainkar PS, Prasanthkumar S, Adepu R, Chandrasekhar S. Practical Access to Fused Carbazoles via Oxidative Benzannulation and their Photophysical Properties. J Org Chem 2024; 89:9586-9596. [PMID: 38899857 DOI: 10.1021/acs.joc.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
An aryne annulation strategy for the synthesis of fused carbazoles is developed using indolyl β-ketonitrile in a cascade manner. The reaction sequence involves aryne-mediated [2 + 2] cycloaddition cleavage and intramolecular Michael addition, followed by oxidation under transition-metal-free reaction conditions. Subsequently, conversion of benzo[b]carbazole-6-carbonitrile to carbazole quinone is observed upon prolongation of the reaction time. Furthermore, these materials exhibit high quantum efficiency, which promotes the light-emitting diode applications.
Collapse
Affiliation(s)
- Shweta Rai
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Basavarajagouda E Patil
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Priti Kumari
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Seelam Prasanthkumar
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Adepu
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Wang K, Zhou W, Jia J, Ye J, Yuan M, Yang J, Qi Y, Chen R. Substrate-Controlled Diversity-Oriented Synthesis of Novel Polycyclic Frameworks via [4 + 2] and [3 + 2] Annulations of Ninhydrin-Derived MBH Adducts with 3,4-Dihydroisoquinolines. Molecules 2023; 28:6761. [PMID: 37836604 PMCID: PMC10574269 DOI: 10.3390/molecules28196761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Substrate-controlled diversity-oriented synthesis of polycyclic frameworks via [4 + 2] and [3 + 2] annulations between ninhydrin-derived Morita-Baylis-Hillman (MBH) adducts and 3,4-dihydroisoquinolines under similar reaction conditions have been developed. The reaction provides diversity-oriented synthesis of a series of novel and structurally complex spiro multi heterocyclic skeletons in good yields (up to 87% and 90%, respectively) with excellent diastereoselectivities (up to >25:1 dr). In particular, the switchable [4 + 2] and [3 + 2] annulation reactions are controlled by tuning the hydroxyl protecting group on the ninhydrin-derived MBH adduct to deliver structural diverse spiro[indene-2,2'-[1,3]oxazino[2,3-a]isoquinoline] and spiro[indene-2,1'-pyrrolo[2,1-a]isoquinoline], respectively. Furthermore, the relative configuration and chemical structure of two kinds of cycloadducts were confirmed through X-ray diffraction analysis.
Collapse
Affiliation(s)
- Kaikai Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Wenwen Zhou
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Jun Jia
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130012, China;
| | - Junwei Ye
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Mengxin Yuan
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Jie Yang
- School of Chemistry & Materials Engineering, Xinxiang University, Xinxiang 453000, China
| | - Yonghua Qi
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| |
Collapse
|
3
|
Dhanaji JR, Samatha P, Raju S, Mainkar PS, Adepu R, Chandrasekhar S. Substitution controlled aryne insertion: synthesis of diarylmethane/chromones. Chem Commun (Camb) 2023; 59:2648-2651. [PMID: 36779483 DOI: 10.1039/d2cc05992d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aryne insertion reaction with 2-aroyl malonates/cyanoesters lead to the formation of diarylmethane or chromones depending on the substitution on the aryne ring. The presence of an electronegative atom at the ortho position of arynes generates chromones, whereas other arynes lead to the formation of diarylmethanes, via a cascade double aryne insertion.
Collapse
Affiliation(s)
- Jadhav Rahul Dhanaji
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Polasani Samatha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Silver Raju
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Adepu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Krishna RB, Moncy SH, Mohan C. Arynes as synthetic linchpins towards the construction of diversely functionalized natural product skeletons. Org Biomol Chem 2023; 21:479-488. [PMID: 36514934 DOI: 10.1039/d2ob01975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arynes are a privileged class of reactive intermediates in synthetic organic chemistry, and their unusual reactivities have been the subject of engrossing research interest. Recently, there are many reports on novel aryne-based synthetic innovations as a linchpin approach to accomplish the total synthesis of structurally diverse natural products or their derivatives in a racemic and enantiopure fashion. This review provides an overview of the literature on synthetic strategies, employing arynes as crucial intermediates to construct architecturally intriguing bioactive natural products/derivatives in a period of 2019 to 2022. This study highlights the need to investigate the effective synthesis and search for new biological uses of highly functionalized natural product skeletons.
Collapse
Affiliation(s)
- R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Shirin Hanna Moncy
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India.
| |
Collapse
|
5
|
Sambasiva Rao YN, Ghosh P, Mainkar PS, Chandrasekhar S. Access to Spiroindanolactones/lactams through an Aryne Insertion/Spirocyclization Strategy. Org Lett 2022; 24:5372-5375. [DOI: 10.1021/acs.orglett.2c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Y. N. Sambasiva Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S. Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Niedbała P, Majdecki M, Grodek P, Jurczak J. H-Bond Mediated Phase-Transfer Catalysis: Enantioselective Generating of Quaternary Stereogenic Centers in β-Keto Esters. Molecules 2022; 27:molecules27082508. [PMID: 35458707 PMCID: PMC9024675 DOI: 10.3390/molecules27082508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, we would like to present the development of a highly optimized method for generating the quaternary stereogenic centers in β-keto esters. This enantioselective phase-transfer alkylation catalyzed by hybrid Cinchona catalysts allows for the efficient generation of the optically active products with excellent enantioselectivity, using only 1 mol% of the catalyst. The vast majority of phase-transfer catalysts in asymmetric synthesis work by creating ionic pairs with the nucleophile-attacking anionic substrate. Therefore, it is a sensible approach to search for new methodologies capable of introducing functional groups into the precursor’s structure, maintaining high yields and enantiomeric purity.
Collapse
|
7
|
Chaitanya NK, Rao YNS, Choutipalli VSK, Mainkar PS, Subramanian V, Chandrasekhar S. Cascade aryne insertion/vinylogous aldol reaction of vinyl-substituted β-keto/enol carbonyls. Chem Commun (Camb) 2022; 58:3178-3181. [PMID: 35171160 DOI: 10.1039/d1cc06810e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic and acyclic vinyl substituted β-keto/enol carbonyl substrates, on reaction with arynes, result in differentially substituted naphthyl carbocycles, hitherto difficult to synthesize with existing protocols. While the substitutions on the arynes have no role, the ring size of the cyclic β-keto/enol esters has a profound influence on the product formation.
Collapse
Affiliation(s)
- Nandikolla Krishna Chaitanya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Y N Sambasiva Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkata Surya Kumar Choutipalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Jiang Y, Xi S, Wang Q, Fu L, He L, Wang Z, Zhang M. Facile synthesis of δ-ketoesters via formal two-carbon insertion into β-ketoesters. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Liao JX, Sun JS, Hu ZN, Liu H. Advances in the Semi-Synthesis of Triterpenoids. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1543-9719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractRecent achievements in triterpenoid semi-synthesis are discussed in this short review, which is divided into three parts according to the type of synthetic strategy being employed. These strategies include functionalization, modification of the carbon skeleton, and glycosylation. In the section on functionalization strategies, both functional group interconversions and new functional group installations on triterpenoid starting materials are described. The section on modification of the carbon skeleton is divided into three parts according to the tactic being applied, and incorporates rearrangement of the carbon skeleton, ring scission, and introduction of an additional heterocyclic ring. Meanwhile, in the section on glycosylation, notable achievements in the semi-synthesis of both natural and artificial triterpene saponins are discussed. Overall, the pivotal transformations that have brought about striking chemical structure variations of triterpenoid starting materials are highlighted herein, and it is hoped that this short review will provide inspiration to both established and new investigators engaged in this field of research. 1 Introduction2 Semi-Synthesis of Triterpenoids via Functionalization Strategies2.1 Functionalization of Rings with Functional Groups2.2 Functionalization of a Side Chain2.3 Functionalization of Rings without Existing Functional Groups 2.4 Functionalization of Angular Methyl Groups2.5 Functionalization of Angular Methyl Groups and Functional-Group-Free Rings2.6 Multisite Modifications3 Semi-Synthesis of Triterpenoids via C-Skeleton Modification Strategies3.1 Rearrangement Tactics3.2 Ring-Opening Tactics3.3 Additional Ring Introduction Tactics4 emi-Synthesis of Triterpenoids via a Glycosylation Strategy5 Conclusions and Outlook
Collapse
|
10
|
Sanjeev K, Raju S, Chandrasekhar S. Aromaticity-Driven Access to Cycloalkyl-Fused Naphthalenes. Org Lett 2021; 23:4013-4017. [PMID: 33938758 DOI: 10.1021/acs.orglett.1c01220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the efficient synthesis of cycloalkyl-fused naphthalenes through the [4 + 2]-cycloaddtion/decarboxylative aromatization of alkyne-tethered aryne insertion adducts. These scaffolds were difficult to synthesize using conventional reactions. The reaction proceeds via the formation of a benzopyrylium intermediate followed by intramolecular [4 + 2] cycloaddition and a subsequent decarboxylation pathway. This method is also compatible with allene-tethered substrates to afford similar products. In addition, the one-pot synthesis of polysubstituted naphthalenes via aryne insertion/benzannulation has also been developed in good yield.
Collapse
Affiliation(s)
- Karekar Sanjeev
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Silver Raju
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Adepu R, Dhanaji JR, Samatha P, Mainkar PS, Chandrasekhar S. Synthesis of 2-Amino-2′-hydroxy-1,1′-biaryls via Cascade Benzannulation and C–N Bond Cleavage Sequence. Org Lett 2020; 22:8224-8228. [DOI: 10.1021/acs.orglett.0c02749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raju Adepu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jadhav Rahul Dhanaji
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Polasani Samatha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Prathama S. Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Kallepu S, Neeli PK, Mallappa S, Nagendla NK, Reddy Mudiam MK, Mainkar PS, Kotamraju S, Chandrasekhar S. sp 3 -Rich Glycyrrhetinic Acid Analogues Using Late-Stage Functionalization as Potential Breast Tumor Regressing Agents. ChemMedChem 2020; 15:1826-1833. [PMID: 32893968 DOI: 10.1002/cmdc.202000400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Late-stage functionalization (LSF) aids drug discovery efforts by introducing functional groups onto C-H bonds on pre-existing skeletons. We adopted the LSF strategy to synthesize analogues of the abundantly available triterpenoid, glycyrrhetinic acid (GA), by introducing aryl groups in the A-ring, expanding the A-ring and selectively activating one methyl group of the gem-dimethyl groups. Intriguingly, two compounds were found to preferentially accumulate in the mitochondrial compartment of MDA-MB-231 breast cancer cells, to cause depolarization of mitochondrial membrane potential and to induce antiproliferative and anti-invasive effects through enhanced mitochondrial superoxide production with parallel depletion of GSH levels. Furthermore, intraperitoneal administration of these two compounds, in comparison with GA, greatly regressed breast tumor growth and metastasis in a SCID mouse model bearing labeled MDA-MB-231 cells.
Collapse
Affiliation(s)
- Shivakrishna Kallepu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Praveen Kumar Neeli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Sreevidya Mallappa
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Narendra Kumar Nagendla
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Mohana Krishna Reddy Mudiam
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110020, India
| |
Collapse
|
13
|
Bommakanti SS, Kundeti LS, Saddanapu V, Nagaiah K. Synthesis and Cytotoxicity on Human Lung Cancer Cell Lines of 2-Arylidene and Related Analogues of Malabaricol. ACS OMEGA 2020; 5:14069-14077. [PMID: 32566873 PMCID: PMC7301604 DOI: 10.1021/acsomega.0c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Malabaricol is a unique plant natural product, 3-keto tricarbocyclic triterpenoid, isolated from Ailanthus malabarica. Malabaricol underwent reaction with aromatic aldehydes under alkaline conditions to form 2-arylidene analogs. Indoles and pyrazine ring system fused to the 2,3-position of malabaricol were synthesized. In this ring system of tricarbocyclic triterpenoid, the conformation is such that there is no steric hindrance due to C4 and C10 axial methyl groups and other skeletons. Malabaricol and its synthetic analogues show cytotoxic activity toward lung cancer, which was compared to that of standard doxorubicin.
Collapse
Affiliation(s)
- S. Srividya Bommakanti
- Centre
for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Lakshmi Srinivasa
Rao Kundeti
- Centre
for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Venkateshwarlu Saddanapu
- Department
of Applied Biology, CSIR-Indian Institute
of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Kommu Nagaiah
- Centre
for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
14
|
Yang Y, Xu Y, Jones CR. A Ring Expansion Route to Benzofused N-Heterocycles Through Aryne Insertion into 1,3-Diaza-heterocycles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yun Yang
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road E1 4NS London UK
| | - Yue Xu
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road E1 4NS London UK
| | - Christopher R. Jones
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road E1 4NS London UK
| |
Collapse
|