1
|
Weng JH, Xu XH, Guan ZP, Dong ZB. Copper-Catalyzed One-Pot Synthesis of N, N-4-Triphenylthiazol-2-amines. J Org Chem 2024; 89:16390-16400. [PMID: 39466267 DOI: 10.1021/acs.joc.4c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Herein, we reported an efficient copper-catalyzed strategy for the synthesis of N,N-4-triphenylthiazol-2-amines from bromoacetophenone, phenylthiourea and iodobenzene. This method features good functional group tolerance, easy availability of starting materials and simplicity of operation, which provides an alternative method for the synthesis of 2-aminothiazoles.
Collapse
Affiliation(s)
- Jia-Hao Weng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao-Hu Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Peng Guan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Hubei Three Gorges Laboratory, Yichang 443000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Hubei Three Gorges Laboratory, Yichang 443000, China
| |
Collapse
|
2
|
Li N, Peng ZN, Xiong R, Wang AC, Dong ZB. Visible-light induced decarboxylative coupling of phenoxyacetic acid with disulfides: synthesis of α-arylthioanisole derivatives. Chem Commun (Camb) 2024; 60:12004-12007. [PMID: 39355901 DOI: 10.1039/d4cc03718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Photoredox-catalyzed cross-coupling reaction is an efficient strategy for the construction of organic molecules. Herein, we developed a method to synthesize α-arylthioanisoles by constructing C-S bonds in the presence of a Ru-photoredox catalyst. Thus, a series of α-arylthioanisole compounds were efficiently obtained through decarboxylative cross-coupling under mild conditions. This protocol features high efficiency, broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Ning Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhao-Nian Peng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Run Xiong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Ao-Cheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Wang L, Chen L, Qin Z, Zhao B, Ni K, Li H, Li J, Duan H, Ren F, An J. Samarium-Oxo/Hydroxy Cluster: A Solar Photocatalyst for Chemoselective Aerobic Oxidation of Thiols for Disulfide Synthesis. J Org Chem 2024; 89:8357-8362. [PMID: 38819110 DOI: 10.1021/acs.joc.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Oxidation contributes as a secondary driver of the prevailing carbon emission in the chemical industries. To address this issue, photocatalytic aerobic oxidation has emerged as a promising alternative. However, the challenge of achieving satisfactory chemoselectivity and effective use of solar light has hindered progress in this area. In this context, the present study introduces a novel homogeneous photocatalyst, [Sm6O(OH)8(H2O)24]I8(H2O)8 cluster (Sm-OC), via a unique auxiliary ligand-free oxidative hydrolysis. Using Sm-OC as catalyst, a solar photocatalyzed aerobic oxidation of thiols has been developed for the synthesis of valuable disulfides. Remarkably, this catalyst manifested a significant turnover number ≥2000 under tested conditions. Sm-OC-catalyzed aerobic oxidation showcased remarkable chemoselectivity. In thiol oxidations, despite the vulnerability of disulfides toward overoxidation, overoxidized byproducts or oxidation of nontarget functional groups was not detected across all 28 tested substrates. This investigation presents the first application of a lanthanide-oxo/hydroxy cluster in photocatalysis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Lingxia Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixuan Qin
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bihan Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ke Ni
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hengzhao Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junyu Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Liu WJ, Hu ZC, Wu YX, Deng SH, Ren ZL, Dong ZB. Selective Construction of C-S/S-N Bonds from N-Substituted O-Thiocarbamates and Indoles under Transition-Metal-Free Conditions. J Org Chem 2024; 89:4098-4112. [PMID: 38421813 DOI: 10.1021/acs.joc.3c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A method for the selective construction of S-N/C(sp2)-S bonds using N-substituted O-thiocarbamates and indoles as substrates is reported. This protocol features good atom utilization, mild conditions, short reaction time, and wide substrate scope, which can provide a convenient path for the functionalization of indoles. In addition, the reaction could be scaled up on gram scale, showing potential application value in industry synthesis.
Collapse
Affiliation(s)
- Wen-Jie Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Chao Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu-Xi Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shi-Hao Deng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Feng R, Li ZY, Liu YJ, Dong ZB. Selective Synthesis of Sulfonamides and Sulfenamides from Sodium Sulfinates and Amines. J Org Chem 2024; 89:1736-1747. [PMID: 38215479 DOI: 10.1021/acs.joc.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
An effective method was explored for the selective synthesis of sulfonamides and sulfenamides using sodium sulfinates and amines as starting materials. This method offers mild reaction conditions, a broad substrate scope, high efficiency, and readily accessible materials, making it suitable and an alternative strategy for the preparation of a variety of biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Rong Feng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhong-Yu Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yue-Jin Liu
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
6
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
7
|
Fang Y, Chen S, Chang LY. Construction and characterization of a magnetic nanoparticle-supported Cu complex: a stable and active nanocatalyst for synthesis of heteroaryl-aryl and di-heteroaryl sulfides. RSC Adv 2024; 14:812-830. [PMID: 38174265 PMCID: PMC10758930 DOI: 10.1039/d3ra07791h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Diaryl and di-heteroaryl sulfides exist in the structure of many drugs and important biological compounds, also these compounds are well-known in medicinal chemistry due to important biological and pharmaceutical activities. Therefore, the development of novel, ecofriendly and efficient catalytic systems for the preparation of diaryl and di-heteroaryl sulfides is a very attractive and important challenge in organic synthesis. In this attractive methodology, we wish to introduce Fe3O4-supported 3-amino-4-mercaptobenzoic acid copper complex (Fe3O4@AMBA-CuI) nanomaterials as a novel and efficient magnetically recoverable catalyst for the preparation of heteroaryl-aryl and di-heteroaryl sulfides with high yields through reaction of heteroaryl halides with aryl or heteroaryl boronic acids and S8 as the sulfur source under ecofriendly conditions. This catalytic system was very efficient and practical for a diverse range of heteroaryl substrates including benzothiazole, benzoxazole, benzimidazole, oxadiazole, benzofuran, and imidazo[1,2-a]pyridine, because the desired diaryl and di-heteroaryl sulfides were prepared with high yields. The reusability-experiments revealed that the Fe3O4@AMBA-CuI nanocatalyst can be magnetically separated and reused at least six times without a significant decrease in its catalytic activity. VSM and ICP-OES analyses confirmed that despite using the Fe3O4@AMBA-CuI nanocatalyst 6 times, the magnetic properties and stability of the catalyst were still maintained. Although all the obtained heteroaryl-aryl and di-heteroaryl sulfide products are known and previously reported, the synthesis of this number of heteroaryl-aryl and di-heteroaryl sulfides has never been reported by any previouse methods.
Collapse
Affiliation(s)
- Yutong Fang
- Sinopec Research Institute of Petroleum Processing Beijing 100089 China
| | - Songlin Chen
- Department of Basics, Naval University of Engineering Wuhan 430030 Hubei China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology Wuhan 430070 Hubei China
| | - Li-Yuan Chang
- Institute of Chemical and Nanotechnology Research Shanghai China
| |
Collapse
|
8
|
Meyrelles R, Schupp M, Maryasin B. Mechanistic Study on Selenium- and Sulfur-Mediated Isomerization of Hydroxamic Acids. Chemistry 2023; 29:e202302386. [PMID: 37769009 DOI: 10.1002/chem.202302386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
An in-depth computational study reveals the intriguing mechanism of the recently reported isomerization of hydroxamic acids into para-aminophenols catalyzed by phenylselenyl bromide under mild conditions. The computations not only align with the reported experimental data, effectively explaining observed phenomena such as para-selectivity but also shed light on crucial aspects of the reaction mechanism that establish limitations on the scope of the studied rearrangement. Additionally, a joint theoretical/experimental study was performed to examine the potency of the phenylsulfenyl bromide to mediate the reaction under the same conditions.
Collapse
Affiliation(s)
- Ricardo Meyrelles
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Manuel Schupp
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| |
Collapse
|
9
|
Deng SH, Zhao SY, Huang YY, Chang MR, Dong ZB. Glyoxylic Acid Monohydrate-Promoted Formation of the C-SO 2 Bond Starting from Maleimides/Quinones and Sodium Sulfinates. J Org Chem 2023; 88:15925-15936. [PMID: 37939006 DOI: 10.1021/acs.joc.3c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
By using glyoxylic acid monohydrate as a promoter, a wide range of substances containing a C-SO2 bond could be obtained from N-substituted maleimides or quinones and sodium sulfinates. The protocol features mild reaction conditions, short reaction time, and good atomic economics, which provides an alternative protocol for the α-sulfonylation of α,β-unsaturated ketones.
Collapse
Affiliation(s)
- Shi-Hao Deng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shi-Yi Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yi-Yun Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Meng-Ran Chang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
10
|
Bishop HD, Zhao Q, Uyeda C. Catalytic Asymmetric Synthesis of Zinc Metallacycles. J Am Chem Soc 2023; 145:20152-20157. [PMID: 37695207 DOI: 10.1021/jacs.3c05885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Transition-metal-catalyzed reductive coupling reactions of alkynes and imines are attractive methods for the synthesis of chiral allylic amines. Mechanistically, these reactions involve oxidative cyclization of the alkyne and the imine to generate a metallacyclic intermediate, which then reacts with H2 or a H2 surrogate to form the product. As an alternative to this hydrogenolysis pathway, here we show that transmetalation to zinc can occur, forming a zinc metallacycle product. This organozinc product serves as a versatile nucleophile for carbon-carbon and carbon-heteroatom coupling reactions. Mechanistic studies based on isotopic labeling experiments and DFT calculations suggest that the key transmetalation step occurs between a Co(II) species and ZnCl2.
Collapse
Affiliation(s)
- Hayden D Bishop
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qiang Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Jiang XY, Yang CL, Li N, Xiao HQ, Yu JX, Dong ZB. PPh 3/I 2 Promoted Synthesis of Unsymmetrical Disulfides from Sodium Sulfites and 2-Mercaptobenzo Heterocyclics. J Org Chem 2023; 88:13272-13278. [PMID: 37656971 DOI: 10.1021/acs.joc.3c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
A simple and efficient method for the synthesis of unsymmetrical disulfides is reported. Using sodium sulfites and 2-mercaptobenzo heterocyclic compounds as starting materials, the unsymmetrical sulfur-sulfur bonds could be quickly constructed in the PPh3/I2 reaction system under transition-metal-free conditions. This protocol has the advantages of mild reaction conditions, easily available starting materials, and wide substrate scope, showing potential synthetic value for the synthesis of a diversity of biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xin-Yi Jiang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cheng-Li Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ning Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hua-Qing Xiao
- Hubei Greenhome Materials Technology, Inc., Xiantao 433000, China
| | - Jun-Xia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Greenhome Materials Technology, Inc., Xiantao 433000, China
| |
Collapse
|
12
|
Gong ZY, Yang CL, Wang D, Huang L, Dong ZB. One-Pot Synthesis of Benzoxazole/Benzothiazole-Substituted Esters by Michael Addition: A Selective Construction of C-N/C-S Bonds. Catalysts 2023. [DOI: 10.3390/catal13040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
An efficient and convenient synthesis of benzoxazole/benzothiazole-substituted esters in a one-pot strategy is reported. In this investigation, a selective construction of C-N and C-S bonds via simple addition is performed. Thus, using substituted 2-aminophenols/2-aminobenzenethiols, TMTD (tetramethylthiuram disulfide) and α,β-unsaturated esters as starting substrates, C-N and C-S bonds can be selectively constructed by means of the Michael addition reaction. This protocol features high selectivity, high atomic economy, mild conditions, good functional tolerance and good to excellent yields, showing the potential value for the preparation of some biologically and pharmaceutically active compounds.
Collapse
|
13
|
Wu YX, Wu SY, Dong ZB. Green and Practical Synthesis of Thioenamines and Chromones via Iodine-Catalyzed Cross-Dehydrogenation Coupling Reaction. J Org Chem 2022; 87:15350-15357. [DOI: 10.1021/acs.joc.2c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yue-Xiao Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shi-Ya Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
14
|
Ma J, Gong ZY, Dong ZB. Synthesis of symmetric diaryl disulfides using odorless and easily available phenyl dimethylcarbamodithioates as organosulfur sources. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People’s Republic of China
| | - Zhi-Ying Gong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People’s Republic of China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, People’s Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, People’s Republic of China
| |
Collapse
|
15
|
Yang F, He GC, Sun SH, Song TT, Min XT, Ji DW, Guo SY, Chen QA. Selective C-S Bond Constructions Using Inorganic Sulfurs via Photoinduced Electron Donor-Acceptor Activation. J Org Chem 2022; 87:14241-14249. [PMID: 36219805 DOI: 10.1021/acs.joc.2c01750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By complementing traditional transition metal catalysis, photoinduced catalysis has emerged as a versatile and sustainable way to achieve carbon-heteroatom bond formation. This work discloses a visible-light-induced reaction for the formation of a C-S bond from aryl halides and inorganic sulfuration agents via electron donor-acceptor (EDA) complex photocatalysis. Divergent formations of organic sulfide and disulfide have been demonstrated under mild conditions. Preliminary mechanistic studies suggest that visible-light-induced intracomplex charge transfer within the monosulfide-anion-containing EDA complex permits the C-S bond construction reactivity.
Collapse
Affiliation(s)
- Fan Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shao-Han Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Ma J, Feng R, Zhou HL, Hao EJ, Shi Z, Dong ZB. One-Pot Synthesis of N,N-Diphenyl-2-benzothiazolamines from 1-(2-Iodophenyl)-3-phenylthioureas and Iodobenzenes. J Org Chem 2022; 87:14342-14351. [PMID: 36200367 DOI: 10.1021/acs.joc.2c01789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient copper-catalyzed synthesis of a variety of N,N-diphenyl-2-benzothiazolamines was developed. Starting from substituted 1-(2-iodophenyl)-3-phenylthioureas and substituted iodobenzenes, the reaction proceeded smoothly via a tandem manner in the presence of CuI to afford the corresponding N,N-diphenyl-2-benzothiazolamine derivatives with good functional group tolerance. The protocol features simple performance, easily available starting materials, a one-pot manner, and good functional group tolerance, providing a practical strategy for the preparation of poly-functionalized amines.
Collapse
Affiliation(s)
- Jie Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Rong Feng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hao-Lin Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
17
|
Homocouplings of Sodium Arenesulfinates: Selective Access to Symmetric Diaryl Sulfides and Diaryl Disulfides. Molecules 2022; 27:molecules27196232. [PMID: 36234770 PMCID: PMC9571168 DOI: 10.3390/molecules27196232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Symmetrical diaryl sulfides and diaryl disulfides have been efficiently and selectively constructed via the homocoupling of sodium arenesulfinates. The selectivity of products relied on the different reaction systems: symmetrical diaryl sulfides were predominately obtained under the Pd(OAc)2 catalysis, whereas symmetrical diaryl sulfides were exclusively yielded in the presence of the reductive Fe/HCl system.
Collapse
|
18
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
19
|
Abstract
Sulfur-containing compounds have attracted considerable interest due to their wide-ranging applications in pharmaceuticals, agriculture, natural products, and organic materials. The development of efficient and rapid methods for the construction and transformation of sulfur-containing compounds is of great importance. Since nickel is inexpensive and has a variety of valence states, strong nucleophilicity and low energy barriers for oxidative addition, the construction and transformation of sulfur-containing compounds by nickel-catalyzed cross-coupling have become important strategies. In addition, sulfur-containing compounds have also been playing increasingly important roles in the field of cross-coupling due to their thermodynamically stable but dynamic activity. This review will focus on nickel-catalyzed construction and transformation of various sulfide-containing compounds, such as sulfides, disulfides, and hypervalent sulfur-containing compounds.
Collapse
Affiliation(s)
- Su Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
20
|
Yang CL, Gao XJ, Jiang XY, Shi Z, Hao EJ, Dong ZB. Synthesis of Unsymmetric Thiosulfonates Starting from N-Substituted O-Thiocarbamates: Easy Access to the S-SO 2 Bond. J Org Chem 2022; 87:11656-11668. [PMID: 35959946 DOI: 10.1021/acs.joc.2c01301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using phenyliodine diacetate as an oxidant and nickel acetate as a promoter, a wide range of unsymmetric thiosulfonates could be furnished easily in moderate to excellent yields starting from N-substituted O-thiocarbamates and sodium sulfinates. This protocol features mild conditions, short reaction times, and high atomic utilization, which can provide an alternative method for the synthesis of unsymmetric thiosulfonates. In addition, the reaction could be scaled up on a gram scale, showing potential application value in industry.
Collapse
Affiliation(s)
- Cheng-Li Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xue-Jie Gao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xin-Yi Jiang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
21
|
Xu XH, Hao EJ, Shi Z, Dong ZB. Easy S-Alkylation of Arylthioureas and 2-Mercaptobenzothiazoles Using Tetraalkylammonium Salts under Transition-Metal-Free Conditions. J Org Chem 2022; 87:9675-9687. [PMID: 35896442 DOI: 10.1021/acs.joc.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly-efficient and practical method for S-alkylation of arylthioureas was reported. Using tetraalkylammonium salts as alkylation reagents, a series of 68 S-substituted aryl-isothioureas were obtained in good to excellent yields under transition-metal-free conditions. The protocol features simple performance, broad functional group tolerance, good to excellent yields, and easily available starting materials, showing potential synthetic value for the preparation of diverse biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xiao-Hu Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
22
|
Yang YZ, Li Y, Lv GF, He DL, Li JH. Nickel-Catalyzed C-S Reductive Cross-Coupling of Alkyl Halides with Arylthiosilanes toward Alkyl Aryl Thioethers. Org Lett 2022; 24:5115-5119. [PMID: 35819227 DOI: 10.1021/acs.orglett.2c01954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nickel-catalyzed C-S reductive cross-coupling of alkyl halides with arylthiosilanes for producing alkyl aryl thioethers is developed. This reaction is initiated by umpolung transformations of arylthiosilanes followed by C-S reductive cross-coupling with alkyl halides to manage an electrophilic alkyl group onto the electrophilic sulfur atom and then construct a C(sp3)-S bond, and features exquisite chemoselectivity, excellent tolerance of diverse functional groups, and wide applications for late-stage modification of biologically relevant molecules.
Collapse
Affiliation(s)
- Yu-Zhong Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, Yunnan University, Kunming, Yunnan 650091, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Hu ZC, Wu YX, Ye L, Cui JJ, Dong ZB. An Efficient and Practical Construction of S‐N Bond from Aryl Thioureas and Amines under Metal‐free Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-Chao Hu
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Yue-Xiao Wu
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Lei Ye
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Jing-Jing Cui
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
24
|
Wu YX, Huang MH, Peng K, Shi Z, Hao EJ, Dong ZB. One-Pot Synthesis of Benzoazole-Substituted Thioenamines via a Cross Dehydrogenation Coupling (CDC) Reaction. J Org Chem 2022; 87:2446-2455. [PMID: 35080400 DOI: 10.1021/acs.joc.1c02353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An iodine-catalyzed synthesis of benzoazole-substituted thioenamines in a one-pot manner was reported. Using 2-aminothiophenols (or 2-aminophenols or 1,2-phenylenediamines), tetramethylthiuram disulfide (TMTD), and enamines (mainly indoles) as starting materials, the target C(sp2)-S formation products (benzoazole-substituted thioenamines) could be furnished smoothly in good yields. The reaction might proceed through an electrophilic substitution pathway in a cross dehydrogenation coupling (CDC) manner. The protocol is metal-free and features easy performance, a one-pot manner, a good functional group tolerance, and good yields.
Collapse
Affiliation(s)
- Yue-Xiao Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ming-Hui Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Kang Peng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
25
|
Xu XH, Dong ZB. Iodine promoted cyclization of N, N′-diphenylthiocarbamides with enaminones: a protocol for the synthesis of poly-substituted 2-iminothiazolines. Org Biomol Chem 2022; 20:8533-8537. [DOI: 10.1039/d2ob01477g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An iodine promoted cyclization reaction between N,N′-diphenylthiocarbamides and enaminones was achieved, providing a series of poly-substituted 2-iminothiazolines.
Collapse
Affiliation(s)
- Xiao-Hu Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
26
|
shao X, Liu Y, Xing S, Zhang J, Liu W, Xu Y, Zhang Y, Yang KF, Yang L, Jiang K. Construction of Diverse C–S/C-Se Bonds via Nickel Catalyzed Reductive Coupling Employing Thiosulfonates and A Selennofonate Under Mild Conditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01873f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed reductive cross coupling between organic iodides and thiosulfonates and a selennofonate under mild conditions is disclosed. This pracitical method provides facile access to a series of unsymmetrical thioethers...
Collapse
|
27
|
Bakare SP, Patil M. Thiolate-assisted copper( i) catalyzed C–S cross coupling of thiols with aryl iodides: scope, kinetics and mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and mechanism of the C–S cross coupling of thiophenols with aryl iodides using a Cu(i) catalyst in a ligand-free environment is disclosed.
Collapse
Affiliation(s)
- Sneha Prasad Bakare
- UM-DAE Centre for Excellence in Basic Sciences, Nalanda, University of Mumbai, Vidyanagari Campus, Santacruz (East), Mumbai – 400098, India
| | - Mahendra Patil
- UM-DAE Centre for Excellence in Basic Sciences, Nalanda, University of Mumbai, Vidyanagari Campus, Santacruz (East), Mumbai – 400098, India
| |
Collapse
|
28
|
Chen ZW, Bai R, Annamalai P, Badsara SS, Lee CF. The journey of C–S bond formation from metal catalysis to electrocatalysis. NEW J CHEM 2022. [DOI: 10.1039/d1nj04662d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective describes the journey of C–S bond constructions starting from transition metal catalysis through oxidant catalysis, photocatalysis and very recently employed electrocatalysis by using various sulfur surrogates.
Collapse
Affiliation(s)
- Ze-Wei Chen
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Pratheepkumar Annamalai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
- i-Center for Advanced Science and Technology (iCAST) National Chung Hsing University, Taichung, Taiwan 402, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA) National Chung Hsing University, Taichung, Taiwan 402, Republic of China
| |
Collapse
|
29
|
Wu Y, Peng K, Hu Z, Fan Y, Shi Z, Hao E, Dong Z. Iodine‐Mediated Cross‐Dehydrogenative Coupling of Heterocyclic Thiols with Amines: An Easy and Practical Formation of S−N Bond. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue‐Xiao Wu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhi‐Chao Hu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Yong‐Hao Fan
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
| | - Er‐Jun Hao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
- Hubei Key Laboratory of Biologic Resources Protection and Utilization Hubei Minzu University Enshi 445000 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- Key Laboratory of Green Chemical Process, Ministry of Education Wuhan Institute of Technology Wuhan 430205 China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology Wuhan 430205 China
| |
Collapse
|
30
|
Guo L, Su M, Lv J, Liu W, Wang S. N
‐Iodosuccinimide‐promoted Regioselective Selenylation of 4
H
‐Pyrido‐[1,2‐
a
]‐pyrimidin‐4‐ones with Diselenides at Room Temperature. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lina Guo
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Meiyun Su
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Junliang Lv
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Wenjie Liu
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| | - Shaohua Wang
- School of Chemistry and Chemical Engineering Guangdong Pharmaceutical University 280 Waihuan East Road Guangzhou 510006 P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center 280 Waihuan East Road Guangzhou 510006 P. R. China
| |
Collapse
|
31
|
Abedinifar F, Bahadorikhalili S, Larijani B, Mahdavi M, Verpoort F. A review on the latest progress of C‐S cross‐coupling in diaryl sulfide synthesis: Update from 2012 to 2021. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fahimeh Abedinifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Saeed Bahadorikhalili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Center for Environmental and Energy Research (CEER) Ghent University–Global Campus Songdo Incheon South Korea
| |
Collapse
|
32
|
Li Q, Guo L, Shi J, Xiang T, Li Q, He K, Wang B, Feng C, Pan F. Nickel‐Catalyzed Deaminative Cross‐Coupling of Disulfides with Katritzky Pryidium Salts to Construct Sulfides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiu‐Li Li
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Li‐Yun Guo
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Jie Shi
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Tong‐Xu Xiang
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Qing Li
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Ke‐Han He
- School of Science Xichang University 1 Xuefu Road Liangshan Yi Autonomous Prefecture Xichang 615000 P. R. China
| | - Bi‐Qin Wang
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Fei Pan
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| |
Collapse
|
33
|
Lin ZS, Tong X, Patrick B, Kennepohl P, Grierson DS. Reaction of 3-Cl/OMe-Substituted 5-Nitrobenzisothiazoles with Hydrazine: Structural and Computational Evidence for Rearrangement Pathways Implicating Intramolecular Formation of Pivotal Meisenheimer Complexes. J Org Chem 2021; 86:6381-6389. [PMID: 33852799 DOI: 10.1021/acs.joc.1c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In projected structure-activity relationship studies of the novel diheteroarylamide-based anti-HIV agent 2 (1C8), one objective was to evaluate the influence of incorporating the central amide motif in 2 into a five-membered pyrazolone ring, as found in 3. It was envisaged that compound 3 could be prepared through reaction of 3-hydrazino-5-nitrobenzisothiazole 5 with the methyl ester of 4-chloropyridine-3-carboxylic acid, followed by N-methylation of the pyridine nitrogen. However, the reaction of 3-methoxyl-5-nitrobenzisothiazole with hydrazine resulted in formation of ring-opened hydrazonate product 18. In the corresponding reaction with 3-chloro-5-nitrobenzisothiazole, a different rearrangement product 19 was formed, in which two 2,1-benzisothiazole units are joined by a sulfur bridge. Meisenheimer complex formation, favored by the presence of the 5-nitro substituent on the benzisothiazole ring, was postulated to be a key feature in the formation of these deep-seated rearrangement products. Support for the proposed formation of the pivotal Meisenheimer complexes and their subsequent evolution to the observed products in which the benzisothiazole sulfur atom is either expelled or maintained in the isomeric 2,1-benzisothiazole system was obtained by density function theory calculations.
Collapse
Affiliation(s)
- Zheng Sonia Lin
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xing Tong
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.,Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Brian Patrick
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Pierre Kennepohl
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.,Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
34
|
Lin Q, Yang W, Yao Y, Li Y, Wang L, Yang D. Copper-Catalyzed Cycloaddition of Heterobicyclic Alkenes with Diaryl Disulfides to Synthesize Dihydrobenzo[b]thiophene Derivatives. J Org Chem 2021; 86:4193-4204. [PMID: 33621086 DOI: 10.1021/acs.joc.0c03034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel copper-catalyzed cycloaddition of diaryl disulfides to heterobicyclic alkenes has been developed. The C-S and C-C bonds can be formed simultaneously on the C═C bond of the olefins via a single-step cycloaddition to afford a series of 2,3-dihydrobenzo[b]thiophene derivatives. This reaction exhibits excellent diastereoselectivity and relatively broad substrate scope. Various functional groups attached to the substrates are tolerated in this protocol to give the corresponding exo adducts in moderate yields.
Collapse
Affiliation(s)
- Qifu Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.,College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, People's Republic of China
| | - Wen Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yongqi Yao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yue Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Lin Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Dingqiao Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
35
|
Dong ZB, Chen JQ. Recent Progress in Utilization of Functionalized Organometallic Reagents in Cross Coupling Reactions and Nucleophilic Additions. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractOrganometallic compounds have become increasingly important in organic synthesis because of their high chemoselectivity and excellent reactivity. Recently, a variety of organometallic reagents were found to facilitate transition-metal-catalyzed cross-coupling reactions and nucleophilic addition reactions. Here, we have summarized the latest progress in cross-coupling reactions and in nucleophilic addition reactions with functionalized organometallic reagents present to illustrate their application value. Due to the tremendous contribution made by the Knochel group towards the development of novel organometallic reagents, this review draws extensively from their work in this area in recent years.Introduction1 Transition-Metal-Catalyzed Cross Couplings Involving Organozinc Reagents2 Transition-Metal-Catalyzed Cross Couplings Involving Organomagnesium Reagents3 Transition-Metal-Free Cross Couplings Involving Zn and Mg Organometallic Reagents4 Nucleophilic Additions Involving Zn and Mg Organometallic Reagents5 Cross-Coupling Reactions or Nucleophilic Additions Involving Mn, Al-, La-, Li-, Sm- and In-Organometallics6 Conclusion
Collapse
Affiliation(s)
- Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology
| | - Jin-Quan Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
| |
Collapse
|
36
|
Zhu F, Chen Z, Walczak MA. Ligand-Free Copper(I)-Mediated Cross-Coupling Reactions of Organostannanes with Sulfur Electrophiles. J Org Chem 2020; 85:11942-11951. [PMID: 32902269 DOI: 10.1021/acs.joc.0c01399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of aryl thioether through the cross-coupling of C-S bond is a highly attractive area of research due to the prevalence of aryl thioether in bioactive natural products, functional materials, agrochemicals, and pharmaceutically active compounds. Herein, we report a ligand-free Cu(I) mediated electrophilic thiolation of organostannanes with sulfur electrophiles. A selective transfer of alkyl groups was achieved in reactions with alkyl carbastannatranes affording congested thioethers. This study offers a unified method to access diaryl and aryl alkyl thioethers and was demonstrated in the context of late-stage modifications..
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Zhenhao Chen
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
37
|
Bhatt D, Kalaramna P, Kumar K, Goswami A. Chemoselective Ru II
-Catalyzed Synthesis of Aryl Thiocyanates and Step-wise Double [2+2+2] Cycloadditions to 2-Aryl Thiopyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Divya Bhatt
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| | - Pratibha Kalaramna
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| | - Krishn Kumar
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| | - Avijit Goswami
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road 140001 Rupnagar Punjab India
| |
Collapse
|
38
|
Peng K, Gao MY, Yi YY, Guo J, Dong ZB. Copper/Nickel-Catalyzed Selective C-S/S-S Bond Formation Starting from O
-Alkyl Phenylcarbamothioates. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kang Peng
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Ming-Yuan Gao
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Yu-Yan Yi
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Jia Guo
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Ministry of Education; Hubei University; 430062 Wuhan China
| |
Collapse
|
39
|
Cho S, Wang Q. 1,2-Difunctionalization of Aryl Triflates: A Direct and Modular Access to Diversely Functionalized Anilines. Org Lett 2020; 22:1670-1674. [DOI: 10.1021/acs.orglett.0c00320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Seoyoung Cho
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| |
Collapse
|
40
|
Wang Y, Deng J, Chen J, Cao F, Hou Y, Yang Y, Deng X, Yang J, Wu L, Shao X, Shi T, Wang Z. Dechalcogenization of Aryl Dichalcogenides to Synthesize Aryl Chalcogenides via Copper Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04931] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yongqiang Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jiedan Deng
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongsheng Hou
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Yuhang Yang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jinru Yang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Lingxi Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
41
|
Tezuka N, Hirano K, Peel AJ, Wheatley AEH, Miyamoto K, Uchiyama M. Lipshutz-type bis(amido)argentates for directed ortho argentation. Chem Sci 2020; 11:1855-1861. [PMID: 34123279 PMCID: PMC8148356 DOI: 10.1039/c9sc06060j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/02/2020] [Indexed: 01/25/2023] Open
Abstract
Bis(amido)argentate (TMP)2Ag(CN)Li2 (3, TMP-Ag-ate; TMP = 2,2,6,6-tetramethylpiperidido) was designed as a tool for chemoselective aromatic functionalization via unprecedented directed ortho argentation (DoAg). X-Ray crystallographic analysis showed that 3 takes a structure analogous to that of the corresponding Lipshutz cuprate. DoAg with this TMP-Ag-ate afforded multifunctional aromatics in high yields in processes that exhibited high chemoselectivity and compatibility with a wide range of functional groups. These included organometallics- and transition metal-susceptible substituents such as methyl ester, aldehyde, vinyl, iodo, (trifluoromethanesulfonyl)oxy and nitro groups. The arylargentates displayed good reactivity with various electrophiles. Chalcogen (S, Se, and Te) installation and azo coupling reactions also proceeded efficiently.
Collapse
Affiliation(s)
- Noriyuki Tezuka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Keiichi Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Andrew J Peel
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew E H Wheatley
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University 3-15-1 Tokida, Ueda Nagano 386-8567 Japan
| |
Collapse
|
42
|
Mruk J, Pazderski L, Ścianowski J, Wojtczak A. Structural and NMR spectroscopic studies of 2-phenylsulfanylpyridine and its analogues or derivatives, and their Au(III) chloride complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Arora G, Yadav M, Gaur R, Gupta R, Rana P, Yadav P, Sharma RK. A template free protocol for fabrication of a Ni(ii)-loaded magnetically separable nanoreactor scaffold for confined synthesis of unsymmetrical diaryl sulfides in water. RSC Adv 2020; 10:19390-19396. [PMID: 35515473 PMCID: PMC9054047 DOI: 10.1039/d0ra02287j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
In the present report, an environmentally benign magnetically recoverable nickel(ii)-based nanoreactor as a heterogeneous catalyst has been developed via a template free approach. The catalytic performance of the synthesized catalyst is assessed in the confined oxidative coupling of arenethiols with arylhydrazines to form unsymmetrical diaryl sulfides under aerobic conditions. The salient features of our protocol include oxidant- and ligand-free conditions, use of water as a green solvent, room temperature and formation of nitrogen and water as the only by-products. Moreover, a broad range of functional groups are tolerated well and provide the corresponding diaryl sulfides in moderate to good yields. Moreover, the heterogeneous nature of the catalyst permits facile magnetic recovery and reusability for up to seven runs, making the present protocol highly desirable from industrial and environmental standpoints. An environmentally benign nickel(ii)-based magnetic nanoreactor has been developed for oxidative coupling of arenethiols with arylhydrazines to form unsymmetrical diaryl sulfides in water at room temperature.![]()
Collapse
Affiliation(s)
- Gunjan Arora
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Manavi Yadav
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rashmi Gaur
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Radhika Gupta
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Pooja Rana
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Priya Yadav
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rakesh Kumar Sharma
- Green Chemistry Network Centre
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
44
|
Dutta S, Saha A. Aryldithiocarbamates as thiol alternatives in Cu-catalyzed C(aryl)-S coupling reactions using aryldiazonium tetrafluoroborate salts. Org Biomol Chem 2019; 17:9360-9366. [PMID: 31620766 DOI: 10.1039/c9ob01976f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An efficient method for the synthesis of unsymmetrical diaryl sulfides has been developed by the C-S cross coupling of aryldithiocarbamates and aryldiazonium salts in the presence of CuI-2,2'-bipyridine and Zn. Aryldithiocarbamate compounds have been used here as thiol substitutes. The protocol shows wide substrate scope and good yields of the products.
Collapse
Affiliation(s)
- Soumya Dutta
- Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | | |
Collapse
|
45
|
Alinezhad H, Ghasemi S, Cheraghian M. MOF nano porous-supported C-S cross coupling through one-pot post-synthetic modification. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Chand S, Pandey AK, Singh R, Kumar S, Singh KN. Eosin‐Y‐Catalyzed Photoredox C−S Bond Formation: Easy Access to Thioethers. Chem Asian J 2019; 14:4712-4716. [DOI: 10.1002/asia.201901060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/03/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Shiv Chand
- Department of Chemistry (Centre of Advanced Study), Institute of ScienceBanaras Hindu University Varanasi 221005 India
| | - Anand Kumar Pandey
- Department of Chemistry (Centre of Advanced Study), Institute of ScienceBanaras Hindu University Varanasi 221005 India
| | - Rahul Singh
- Department of Chemistry (Centre of Advanced Study), Institute of ScienceBanaras Hindu University Varanasi 221005 India
| | - Saurabh Kumar
- Department of Chemistry (Centre of Advanced Study), Institute of ScienceBanaras Hindu University Varanasi 221005 India
| | - Krishna Nand Singh
- Department of Chemistry (Centre of Advanced Study), Institute of ScienceBanaras Hindu University Varanasi 221005 India
| |
Collapse
|
47
|
Graßl S, Hamze C, Koller TJ, Knochel P. Copper-Catalyzed Electrophilic Thiolation of Organozinc Halides by Using N-Thiophthalimides Leading to Polyfunctional Thioethers. Chemistry 2019; 25:3752-3755. [PMID: 30637818 DOI: 10.1002/chem.201806261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Indexed: 12/24/2022]
Abstract
(Hetero)aryl, benzylic, and alkyl zinc halides were thiolated with N-thiophthalimides at 25 °C within 1 h in the presence of 5-10 % Cu(OAc)2 ⋅H2 O to furnish the corresponding polyfunctionalized thioethers in good yields. This electrophilic thiolation was extended to the introduction of trifluoromethylthio (SCF3 ), thiocyanate (SCN), and selenophenyl (SePh) groups. The utility of this method was shown in a seven-step synthesis of a potent cathepsin D inhibitor in 34 % overall yield.
Collapse
Affiliation(s)
- Simon Graßl
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Clémence Hamze
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Thaddäus J Koller
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Paul Knochel
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| |
Collapse
|