1
|
Huang A, Liu Z, Wang R, Chang X, Feng M, Xiang Y, Qi X, Zhu J. Halogen-Atom Transfer Enabled Z-Selective Styrene Synthesis via Dual Cobalt and Photocatalysis Through Coupling of Unactivated Alkyl Iodides With Terminal Arylalkynes. Angew Chem Int Ed Engl 2025:e202501630. [PMID: 40170259 DOI: 10.1002/anie.202501630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/03/2025]
Abstract
An efficient Z-selective cobalt-catalyzed reductive hydroalkylation of terminal aryl alkynes with unactivated alkyl iodides has been achieved, providing a straightforward and modular route to access 1,2-disubstituted Z-styrenes. This reaction operates under mild conditions without requiring over-stoichiometric amounts of metal terminal reductants. Excellent Z/E ratios and good to excellent yields can be achieved for diverse and complex scaffolds with remarkable functional-group compatibility. One potential utility of this reaction is demonstrated by the efficient synthesis of several syn homoallylic alcohols in a one-pot two-step sequence. Control experiments strongly support that the halogen-atom transfer (XAT) process is the key to generating carbon radicals. DFT studies suggest that the catalytic system involves the Co(II)/Co(III) cycle and the steric repulsion between the Co(II) catalyst, and the alkenyl radical in radical capture by Co(II) is the dominant factor controlling the Z/E selectivity. This approach represents the first example of merging photo-XAT with cobalt-catalyzed reductive coupling of terminal aryl alkynes with unactivated alkyl iodides.
Collapse
Affiliation(s)
- Anxiang Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhao Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruobin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinran Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingxing Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxin Xiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Zhang Z, Chen M. Stereo- and Enantioselective Syntheses of 1,2-Oxaborinan-3-enes and δ-Boryl-Substituted Homoallylic Alcohols. Org Lett 2024; 26:10102-10107. [PMID: 39561401 PMCID: PMC11613688 DOI: 10.1021/acs.orglett.4c03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Stereo- and enantioselective syntheses of 1,2-oxaborinan-3-enes and δ-boryl-substituted homoallylic alcohols are reported. We developed a practical approach to synthesize α-boryl-substituted allylboronate. This reagent was utilized to generate α,α-disubstituted allylboronates, and such reagents cannot be accessed via the Pd-catalyzed alkene isomerization approach. Chiral Brønsted-acid-catalyzed aldehyde addition with these reagents gave 1,2-oxaborinan-3-enes with excellent stereo- and enantioselectivities. Lewis-acid-catalyzed aldehyde addition also worked well, affording δ-boryl-substituted homoallylic alcohols with high stereoselectivities. The enantioselective variant of the reaction was achieved via a chiral Brønsted-acid-catalyzed aldehyde addition and Pd-catalyzed alkene isomerization approach.
Collapse
Affiliation(s)
- Zheye Zhang
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Ming Chen
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Gao S, Liu J, Troya D, Chen M. Copper-Catalyzed Asymmetric Acylboration of 1,3-Butadienylboronate with Acyl Fluorides. Angew Chem Int Ed Engl 2023; 62:e202304796. [PMID: 37712934 PMCID: PMC11144059 DOI: 10.1002/anie.202304796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 09/16/2023]
Abstract
We report herein a Cu-catalyzed regio-, diastereo- and enantioselective acylboration of 1,3-butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereocenter with high Z-selectivity and excellent enantioselectivities. While direct access to highly enantioenriched E-isomers was not successful, we showed that such molecules can be synthesized with excellent E-selectivity and optical purities via Pd-catalyzed alkene isomerization from the corresponding Z-isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA); Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, (China)
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| | - Diego Troya
- Department of Chemistry, Virginia Tech, 24061 Blacksburg, VA (USA)
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| |
Collapse
|
4
|
Liu J, Gao S, Miliordos E, Chen M. Asymmetric Syntheses of ( Z)- or ( E)-β,γ-Unsaturated Ketones via Silane-Controlled Enantiodivergent Catalysis. J Am Chem Soc 2023; 145:19542-19553. [PMID: 37639380 PMCID: PMC11144060 DOI: 10.1021/jacs.3c02595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-β,γ-unsaturated ketones from 1,3-butadienyl silanes are developed. The nature of the silyl group of the dienes has a significant impact on the stereo- and enantioselectivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted 1,3-diene gave (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereogenic center with excellent enantioselectivities and high Z-selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-β,γ-unsaturated ketones with high optical purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Boni YT, Vaitla J, Davies HML. Catalyst Controlled Site- and Stereoselective Rhodium(II) Carbene C(sp 3)-H Functionalization of Allyl Boronates. Org Lett 2023; 25:5-10. [PMID: 36563330 DOI: 10.1021/acs.orglett.2c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rhodium(II) catalyst-controlled site- and stereoselective carbene insertion into the distal allylic C(sp3)-H bond of allyl boronates is reported. The optimum chiral catalyst for this reaction is Rh2(S-TPPTTL)4. The fidelity and asymmetric induction of this catalytic transformation allows for a highly diastereoselective and enantioselective C-C bond formation without interference from the allyl boronate functionality. The resulting functionalized allyl boronates are susceptible to stereoselective allylations, generating products with control of stereochemistry at four contiguous stereogenic centers.
Collapse
Affiliation(s)
- Yannick T Boni
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Janakiram Vaitla
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M L Davies
- Emory University, Department of Chemistry, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Gao S, Duan M, Andreola LR, Yu P, Wheeler SE, Houk KN, Chen M. Unusual Enantiodivergence in Chiral Brønsted Acid‐Catalyzed Asymmetric Allylation with β‐Alkenyl Allylic Boronates. Angew Chem Int Ed Engl 2022; 61:e202208908. [PMID: 35989224 DOI: 10.1002/anie.202208908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/11/2022]
Abstract
We report herein a rare example of enantiodivergent aldehyde addition with β-alkenyl allylic boronates via chiral Brønsted acid catalysis. 2,6-Di-9-anthracenyl-substituted chiral phosphoric acid-catalyzed asymmetric allylation using β-vinyl substituted allylic boronate gave alcohols with R absolute configuration. The sense of asymmetric induction of the catalyst in these reactions is opposite to those in prior reports. Moreover, in the presence of the same acid catalyst, the reactions with β-2-propenyl substituted allylic boronate generated homoallylic alcohol products with S absolute configuration. Unusual substrate-catalyst C-H⋅⋅⋅π interactions in the favoured reaction transition state were identified as the origins of observed enantiodivergence through DFT computational studies.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
- China Pharmaceutical University Nanjing 210009 China
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | | | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | | | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
7
|
Gao S, Duan M, Andreola LR, Yu P, Wheeler SE, Houk KN, Chen M. Unusual Enantiodivergence in Chiral Brønsted Acid‐Catalyzed Asymmetric Allylation with β‐Alkenyl Allylic Boronates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shang Gao
- Auburn University Chemistry and Biochemistry UNITED STATES
| | - Meng Duan
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | | | - Peiyuan Yu
- Southern University of Science and Technology Chemistry CHINA
| | | | - Kendall N. Houk
- University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Ming Chen
- Auburn University Chemistry and Biochemistry 179 chemistry building 36849 Auburn UNITED STATES
| |
Collapse
|
8
|
Fujihara T. Cu-Catalyzed Transformations of 1,3-Dienes: Use of Allyl Copper Intermediates in Functionalization. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Ma WW, Yang C, Xie Q, Xu YH. Dienylation of N-benzoylhydrazones with CF 3-substituted homoallenylboronates in water. Org Biomol Chem 2022; 20:1386-1390. [PMID: 35088801 DOI: 10.1039/d1ob02335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient method for the dienylation of N-benzoylhydrazones in water has been developed. This protocol expanded the synthetic application of functionalized homoallenylboronates to provide the useful 2-aminomethyl-1,3-diene derivatives with high efficiency (up to 99% yield) and stereoselectivity without using any catalyst, additive or inert atmosphere. Furthermore, the transformation of a 2-aminomethyl-1,3-diene derivative to synthesize a functionalized pyrrolidine derivative was also explored.
Collapse
Affiliation(s)
- Wei-Wei Ma
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China.
| | - Qiang Xie
- Department of Nuclear Medicine the First Affiliated Hospital of USTC; the Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R China.
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R China. .,State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R China
| |
Collapse
|
10
|
Liu J, Gao S, Chen M. Development of α-Borylmethyl-( Z)-crotylboronate Reagent and Enantioselective Syntheses of ( E)-δ-Hydroxymethyl- syn-homoallylic Alcohols via Highly Stereoselective Allylboration. Org Lett 2021; 23:9451-9456. [PMID: 34860521 DOI: 10.1021/acs.orglett.1c03628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report herein the development of α-borylmethyl-(Z)-crotylboronate reagent and the application in highly stereo- and enantioselective syntheses of (E)-δ-hydroxymethyl-syn-homoallylic alcohols. Starting from 1,4-pentadiene, α-borylmethyl-(Z)-crotylboronate was synthesized in two steps with high Z-selectivity and enantioselectivity. Subsequent aldehyde allylboration with the developed boron reagent gave highly enantioenriched (E)-δ-hydroxymethyl-syn-homoallylic alcohols upon oxidative workup.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
11
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021; 60:24096-24106. [PMID: 34608723 DOI: 10.1002/anie.202107004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/14/2022]
Abstract
We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α-CH2 Bpin-substituted crotylboronate. Chiral phosphoric acid (S)-A-catalyzed asymmetric allyl addition with the reagent gave Z-anti-homoallylic alcohols with excellent enantioselectivities and Z-selectivities. When the enantiomeric acid catalyst (R)-A was utilized, the stereoselectivity was completely reversed and E-anti-homoallylic alcohols were obtained with high E-selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA.,Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
12
|
Gao S, Liu J, Chen M. Catalytic asymmetric transformations of racemic α-borylmethyl-( E)-crotylboronate via kinetic resolution or enantioconvergent reaction pathways. Chem Sci 2021; 12:13398-13403. [PMID: 34777758 PMCID: PMC8528009 DOI: 10.1039/d1sc04047b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/01/2021] [Indexed: 11/03/2022] Open
Abstract
We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate. The Brønsted acid-catalyzed kinetic resolution-allylboration reaction sequence of the racemic reagent gave (Z)-δ-hydroxymethyl-anti-homoallylic alcohols with high Z-selectivities and enantioselectivities upon oxidative workup. In parallel, enantioconvergent pathways were utilized to synthesize chiral nonracemic 1,5-diols and α,β-unsaturated aldehydes with excellent optical purity.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| |
Collapse
|
13
|
Liu J, Chen M. Highly stereoselective syntheses of ( E)-δ-boryl- anti-homoallylic alcohols via allylation with α-boryl-( E)-crotylboronate. Chem Commun (Camb) 2021; 57:10799-10802. [PMID: 34590625 DOI: 10.1039/d1cc04058h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly stereoselective synthesis of (E)-δ-boryl-anti-homoallylic alcohols is developed. In the presence of a Lewis acid, aldehyde allylation with α-boryl-(E)-crotylboronate gave δ-boryl-anti-homoallylic alcohols in good yields with excellent E-selectivity. The E-vinylboronate group in the products provides a useful handle for cross-coupling reactions as illustrated in the fragment synthesis of chaxamycins.
Collapse
Affiliation(s)
- Jiaming Liu
- Departments of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Ming Chen
- Departments of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
14
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
15
|
Chen M. Cu-catalyzed coupling of vinylidene cyclopropanes with allyl and allenyl boronates. Chem Commun (Camb) 2021; 57:9212-9215. [PMID: 34519300 DOI: 10.1039/d1cc03823k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of Cu-catalyzed coupling of vinylidene cyclopropanes with allyl or allenyl boronates is reported. The reaction forms a C-C bond at the terminal carbon atom of the allene moiety of vinylidene cyclopropanes with concurrent opening of the cyclopropane ring. In addition, the resulting Cu-enolate intermediate can be intercepted by external electrophiles.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, 36849, USA.
| |
Collapse
|
16
|
Yoon WS, Han JT, Yun J. Divergent Access to Benzocycles through Copper‐Catalyzed Borylative Cyclizations. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan Seok Yoon
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jung Tae Han
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
17
|
Liu J, Chen M. Enantioselective anti- and syn-(Borylmethyl)allylation of Aldehydes via Brønsted Acid Catalysis. Org Lett 2020; 22:8967-8972. [PMID: 33125249 DOI: 10.1021/acs.orglett.0c03366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enantioselective anti- and syn-(borylmethyl)allylation of aldehydes via phosphoric acid catalysis is reported. Both (E)- and (Z)-γ-borylmethyl allylboronate reagents were prepared via the Cu-catalyzed highly stereoselective protoboration of 1,3-dienylboronate. Chiral phosphoric acid-catalyzed aldehyde allylation with either the (E)- or (Z)-allylboron reagent provided 1,2-anti- or 1,2-syn-adducts in good yields with high enantioselectivities. The application to the synthesis of morinol D was accomplished.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
18
|
Chen J, Miliordos E, Chen M. Highly Diastereo- and Enantioselective Synthesis of 3,6'-Bisboryl-anti-1,2-oxaborinan-3-enes: An Entry to Enantioenriched Homoallylic Alcohols with A Stereodefined Trisubstituted Alkene. Angew Chem Int Ed Engl 2020; 60:840-848. [PMID: 32986252 DOI: 10.1002/anie.202006420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Indexed: 01/17/2023]
Abstract
A Cu-catalyzed regio-, diastereo-, and enantioselective carboboration of 1,1-bisboryl-1,3-butadiene is developed to generate enantioenriched 3,6'-bisboryl-anti-1,2-oxaborinan-3-enes. DFT calculations indicate that the initial diene 1,2-borocupration forms a 3 η-allylic copper as the most stable intermediate. Subsequent aldehyde addition, however, operates under Curtin-Hammett control via a more reactive α,α-bisboryl tertiary allylcopper species to furnish products with high enantioselectivities. The three boryl groups in the products are properly differentiated and can undergo a variety of chemoselective transformations to produce enantioenriched homoallylic alcohols with a stereodefined trisubstituted alkene.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
19
|
Chen J, Miliordos E, Chen M. Highly Diastereo‐ and Enantioselective Synthesis of 3,6′‐Bisboryl‐
anti
‐1,2‐oxaborinan‐3‐enes: An Entry to Enantioenriched Homoallylic Alcohols with A Stereodefined Trisubstituted Alkene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
20
|
Gao S, Duan M, Shao Q, Houk KN, Chen M. Development of α,α-Disubstituted Crotylboronate Reagents and Stereoselective Crotylation via Brønsted or Lewis Acid Catalysis. J Am Chem Soc 2020; 142:18355-18368. [PMID: 33052047 DOI: 10.1021/jacs.0c04107] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of α,α-disubstituted crotylboronate reagents is reported. Chiral Brønsted acid-catalyzed asymmetric aldehyde addition with the developed E-crotylboron reagent gave (E)-anti-1,2-oxaborinan-3-enes with excellent enantioselectivities and E-selectivities. With BF3·OEt2 catalysis, the stereoselectivity is reversed, and (Z)-δ-boryl-anti-homoallylic alcohols are obtained with excellent Z-selectivities from the same E-crotylboron reagent. The Z-crotylboron reagent also participates in BF3·OEt2-catalyzed crotylation to furnish (Z)-δ-boryl-syn-homoallylic alcohols with good Z-selectivities. DFT computations establish the origins of observed enantio- and stereoselectivities of chiral Brønsted acid-catalyzed asymmetric allylation. Stereochemical models for BF3·OEt2-catalyzed reactions are proposed to rationalize the Z-selective allyl additions. These reactions generate highly valuable homoallylic alcohol products with a stereodefined trisubstituted alkene unit. The synthetic utility is further demonstrated by the total syntheses of salinipyrones A and B.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Qianzhen Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
21
|
Chaves-Pouso A, Rivera-Chao E, Fañanás-Mastral M. Copper-catalyzed protoboration of borylated dendralenes: a regio- and stereoselective access to functionalized 1,3-dienes. Chem Commun (Camb) 2020; 56:12230-12233. [PMID: 32926014 DOI: 10.1039/d0cc04018e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A copper-catalyzed protoboration of borylated dendralenes is reported. The method employs an NHC-Cu catalyst and provides access to 1,4-addition products with excellent levels of chemo-, regio- and stereoselectivity. The resulting diene bis(boronates) are oxidized to the corresponding diene diols which are synthetically versatile building blocks.
Collapse
Affiliation(s)
- Andrea Chaves-Pouso
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Eva Rivera-Chao
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Chen J, Chen M. Enantioselective Syntheses of ( Z)-6'-Boryl- anti-1,2-oxaborinan-3-enes via a Dienylboronate Protoboration and Asymmetric Allylation Reaction Sequence. Org Lett 2020; 22:7321-7326. [PMID: 32903009 DOI: 10.1021/acs.orglett.0c02657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enantioselective synthesis of 6'-boryl-anti-1,2-oxaborinan-3-enes is reported. A Cu-catalyzed highly stereoselective 1,4-protoboration of 1,1-bisboryl-1,3-butadiene is developed to generate (E)-α,δ-bisboryl-crotylboronate. The chiral phosphoric-acid-catalyzed asymmetric allylboration of aldehydes with the boron reagent produces 6'-boryl-anti-1,2-oxaborinan-3-enes with excellent Z-selectivities and enantioselectivities. The product contains a vinyl and alkyl boronate unit that can directly participate in a variety of subsequent transformations.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
23
|
Gao S, Duan M, Houk KN, Chen M. Chiral Phosphoric Acid Dual‐Function Catalysis: Asymmetric Allylation with α‐Vinyl Allylboron Reagents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
24
|
Gao S, Duan M, Houk KN, Chen M. Chiral Phosphoric Acid Dual‐Function Catalysis: Asymmetric Allylation with α‐Vinyl Allylboron Reagents. Angew Chem Int Ed Engl 2020; 59:10540-10548. [DOI: 10.1002/anie.202000039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
25
|
|
26
|
Liu J, Tong X, Chen M. Allylboration of Ketones and Imines with a Highly Reactive Bifunctional Allyl Pinacolatoboronate Reagent. J Org Chem 2020; 85:5193-5202. [DOI: 10.1021/acs.joc.9b03222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Xinbo Tong
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
27
|
Gao S, Chen M. Enantioselective Syntheses of 1,4-Pentadien-3-yl Carbinols via Brønsted Acid Catalysis. Org Lett 2019; 22:400-404. [DOI: 10.1021/acs.orglett.9b04089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
28
|
Perry GJP, Jia T, Procter DJ. Copper-Catalyzed Functionalization of 1,3-Dienes: Hydrofunctionalization, Borofunctionalization, and Difunctionalization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04767] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gregory J. P. Perry
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Tao Jia
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People’s Republic of China
| | - David J. Procter
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
29
|
Chen J, Gao S, Chen M. Stereoselective Syntheses of γ,δ-Bifunctionalized Homoallylic Alcohols and Ethers via Chemoselective Allyl Addition to Aldehydes. Org Lett 2019; 21:9893-9897. [DOI: 10.1021/acs.orglett.9b03819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
30
|
Chen J, Gao S, Chen M. Cu-Catalyzed Silylation and Borylation of Vinylidene Cyclopropanes. Org Lett 2019; 21:8800-8804. [DOI: 10.1021/acs.orglett.9b03354] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
31
|
Gao S, Chen M. α-Silicon effect assisted Curtin-Hammett allylation using allylcopper reagents derived from 1,3-dienylsilanes. Chem Sci 2019; 10:7554-7560. [PMID: 31489170 PMCID: PMC6713862 DOI: 10.1039/c9sc02905b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Cu-catalyzed stereoselective synthesis of (E)-δ-silyl-anti-homoallylic alcohols from 1,3-dienylsilane was developed. Mechanistic studies revealed that the borocupration of dienylsilane proceeded through a 1,2-addition pathway to give an allylcopper intermediate with Cu distal to the silyl group. However, the subsequent aldehyde allylation proceeded via Curtin-Hammett control to give (E)-δ-silyl-anti-homoallylic alcohols with high diastereoselectivities. This method was applied to the synthesis of the C1-9 fragment of a polyketide natural product, mycinolide IV.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Ming Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| |
Collapse
|
32
|
Enantioselective syntheses of (E)-γ,δ-disubstituted homoallylic alcohols via BF3·OEt2-catalyzed aldehyde allylboration and analysis of the origin of E-selectivity: A1,2 allylic strain vs. syn-pentane interaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
|
34
|
Chen J, Gao S, Gorden JD, Chen M. Stereoselective Syntheses of γ-Boryl Substituted syn-β-Alkoxy- and syn-β-Amino-homoallylic Alcohols via a Regio- and Stereoselective Allene Diboration and Aldehyde Allylboration Reaction Sequence. Org Lett 2019; 21:4638-4641. [DOI: 10.1021/acs.orglett.9b01535] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
35
|
Gao S, Chen J, Chen M. ( Z)-α-Boryl-crotylboron reagents via Z-selective alkene isomerization and application to stereoselective syntheses of ( E)-δ-boryl- syn-homoallylic alcohols. Chem Sci 2019; 10:3637-3642. [PMID: 30996958 PMCID: PMC6432281 DOI: 10.1039/c9sc00226j] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 11/21/2022] Open
Abstract
Stereoselective synthesis of (Z)-α-boryl-crotylboronate is developed. Ni-catalyzed Z-selective alkene isomerization of α-boryl substituted homoallylboronate provided the targeted (Z)-crotylboronate with high selectivity. Stereoselective addition of the novel crotylboron reagent to aldehydes gave (E)-δ-boryl-substituted syn-homoallylic alcohols with excellent diastereoselectivities. The vinyl boronate unit in the products can be directly used for a subsequent C-C bond-forming transformation as illustrated in the synthesis of the C1-7 fragment of the natural products nannocystin A and nannocystin Ax.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Jichao Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Ming Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| |
Collapse
|
36
|
Wang M, Gao S, Chen M. Stereoselective Syntheses of (E)-γ′,δ-Bisboryl-Substituted syn-Homoallylic Alcohols via Chemoselective Aldehyde Allylboration. Org Lett 2019; 21:2151-2155. [DOI: 10.1021/acs.orglett.9b00461] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mengzhou Wang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
37
|
Li Q, Jiao X, Xing M, Zhang P, Zhao Q, Zhang C. Cu-Catalyzed highly selective reductive functionalization of 1,3-diene using H 2O as a stoichiometric hydrogen atom donor. Chem Commun (Camb) 2019; 55:8651-8654. [PMID: 31286131 DOI: 10.1039/c9cc04011k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A copper-catalyzed highly regio- and diastereo-selective reductive reaction of terminal 1,3-diene with water and aldehyde has been developed. This chemistry afforded a product containing a terminal alkenyl group, which is a versatile kind of precursor for organic synthesis, with the scope for various substrates. The present reaction system could realize the catalytic transfer of hydrogen to diene using water as a stoichiometric H atom donor. In this transformation, B2Pin2, a mild and practical kind of reductant was used as the mediator. The reaction pathway of this practical strategy was illustrated by a control experiment.
Collapse
Affiliation(s)
- Qifan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Sciences, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Xiaoyang Jiao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Sciences, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Mimi Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Sciences, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Penglin Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Sciences, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Qian Zhao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Sciences, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | - Chun Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Sciences, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China. and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Gao S, Chen M. Catalytic carboboration of dienylboronate for stereoselective synthesis of (E)-γ′,δ-bisboryl-anti-homoallylic alcohols. Chem Commun (Camb) 2019; 55:11199-11202. [DOI: 10.1039/c9cc04787e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Cu-catalyzed stereoselective carboboration of dienylboronate for the synthesis of (E)-γ′,δ-bisboryl-anti-homoallylic alcohols was developed.
Collapse
Affiliation(s)
- Shang Gao
- Departments of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| | - Ming Chen
- Departments of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| |
Collapse
|