1
|
Yuan M, Li Z, Shang W, Xiong B, Xu W, Zhu L, Liu Y, Tang KW, Wong WY. Iron-Catalyzed Cross-Dehydrogenative Coupling of para-Quinone Methides with Formamides: In Situ Activation of C(sp 2)-H Bonds. J Org Chem 2024; 89:16663-16678. [PMID: 39485271 DOI: 10.1021/acs.joc.4c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A novel and straightforward method for the iron-catalyzed regioselective cross-dehydrogenative coupling of para-quinone methides (p-QMs) with formamides has been developed, facilitated by the in situ activation of the C(sp2)-H bonds of the formyl and alkenyl substituents via a radical strategy. This method does not require the preactivation of the substrates, and it can accommodate a wide range of p-QMs and formamides under the optimized reaction conditions, resulting in the formation of the expected C-7 acetamides-functionalized para-quinone methides with moderate to good yields. The control experiments revealed that the reaction follows the fundamental equation of second-order kinetics. Additionally, an exploration of the Hammett effect was undertaken to elucidate the impact of the substituents for the reaction. In combination with the DFT calculation, a plausible reaction mechanism was proposed through meticulously controlled experiments.
Collapse
Affiliation(s)
- Minjing Yuan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Wenli Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
2
|
Abbasi F, Sardarian AR. Direct additive-free N-formylation and N-acylation of anilines and synthesis of urea derivatives using green, efficient, and reusable deep eutectic solvent ([ChCl][ZnCl 2] 2). Sci Rep 2024; 14:7206. [PMID: 38532063 DOI: 10.1038/s41598-024-57608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
In the current report, we introduce a simple, mild efficient and green protocol for N-formylation and N-acetylation of anilines using formamide, formic acid, and acetic acid as inexpensive, nontoxic, and easily available starting materials just with heating along stirring in [ChCl][ZnCl2]2 as a durable, reusable deep eutectic solvent (DES), which acts as a dual catalyst and solvent system to produce a wide range of formanilides and acetanilides. Also, a variety of unsymmetrical urea derivatives were synthesized by the reaction of phenyl isocyanate with a range of amine compounds using this benign DES in high to excellent yields. [ChCl][ZnCl2]2 showed good recycling and reusability up to four runs without considerable loss of its catalytic activity.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Chemistry Department, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran
| | - Ali Reza Sardarian
- Chemistry Department, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran.
| |
Collapse
|
3
|
Huang W, Mei Q, Xu S, An B, He M, Li J, Chen Y, Han X, Luo T, Guo L, Hurd J, Lee D, Tillotson E, Haigh SJ, Walton A, Day SJ, Natrajan LS, Schröder M, Yang S. Direct Synthesis of N-formamides by Integrating Reductive Amination of Ketones and Aldehydes with CO 2 Fixation in a Metal-Organic Framework. Chemistry 2024; 30:e202303289. [PMID: 37899311 PMCID: PMC10952134 DOI: 10.1002/chem.202303289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Formamides are important feedstocks for the manufacture of many fine chemicals. State-of-the-art synthesis of formamides relies on the use of an excess amount of reagents, giving copious waste and thus poor atom-economy. Here, we report the first example of direct synthesis of N-formamides by coupling two challenging reactions, namely reductive amination of carbonyl compounds, particularly biomass-derived aldehydes and ketones, and fixation of CO2 in the presence of H2 over a metal-organic framework supported ruthenium catalyst, Ru/MFM-300(Cr). Highly selective production of N-formamides has been observed for a wide range of carbonyl compounds. Synchrotron X-ray powder diffraction reveals the presence of strong host-guest binding interactions via hydrogen bonding and parallel-displaced π⋅⋅⋅π interactions between the catalyst and adsorbed substrates facilitating the activation of substrates and promoting selectivity to formamides. The use of multifunctional porous catalysts to integrate CO2 utilisation in the synthesis of formamide products will have a significant impact in the sustainable synthesis of feedstock chemicals.
Collapse
Affiliation(s)
- Wenyuan Huang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Qingqing Mei
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Shaojun Xu
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
- UK Catalysis HubResearch Complex at HarwellRutherford Appleton LaboratoryHarwellOX11 0FAUK
| | - Bing An
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Meng He
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Xue Han
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Tian Luo
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Lixia Guo
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Joseph Hurd
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Daniel Lee
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Evan Tillotson
- Department of MaterialsUniversity of ManchesterManchesterM13 9PLUK
| | - Sarah J. Haigh
- Department of MaterialsUniversity of ManchesterManchesterM13 9PLUK
| | - Alex Walton
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sarah J. Day
- Diamond Light Source Harwell Science CampusOxfordshireOX11 0DEUK
| | | | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| |
Collapse
|
4
|
Choi DC, Ki DW, Kim YH, Lee IK, Yun BS. Formanilides from the culture broth of Perenniporia fraxinea. J Antibiot (Tokyo) 2023; 76:731-734. [PMID: 37845350 DOI: 10.1038/s41429-023-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
A new formanilide dimer, fraxinin (1), and three known formanilides (2‒4) were isolated from the culture broth of Perenniporia fraxinea using silica gel and Sephadex LH-20 column chromatographies, medium-pressure liquid chromatography (MPLC), and preparative HPLC. The structures of these compounds were determined by spectroscopic methods, such as NMR and mass analysis, and by comparison of the spectra with previously reported data. The free radical scavenging activities of the isolated compounds were assessed using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. Compounds 1‒3 exhibited ABTS radical scavenging activity with IC50 values in the range of 57.2-250.2 μM. Compounds 2 and 4 marginally reduced disease incidence of powdery mildew with a control value of 42% at 1.0 mg ml-1 in cucumber leaf disk assay.
Collapse
Affiliation(s)
- Dae-Cheol Choi
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea
| | - Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea
| | - Young-Hee Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, Korea.
| |
Collapse
|
5
|
Singh V, Rajput K, Mishra A, Singh S, Srivastava V. Microwave-assisted chemoselective transamidation of secondary amides by selective N-C(O) bond cleavage under catalyst, additive and solvent-free conditions. Chem Commun (Camb) 2023; 59:14009-14012. [PMID: 37941417 DOI: 10.1039/d3cc04128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A microwave-assisted, highly chemoselective protocol has been developed for the transamidation of tert-butyloxycarbonyl (Boc) activated secondary carboxamides with amines. Under non-conventional microwave techniques, the reactions were achieved under catalyst, additive, promoter and solvent-free conditions. The transamidation of a structurally diverse set of amides and amines was accomplished in good to excellent yields. The salient features of the developed methodology include a simple operation, broad substrate scope, functional group tolerance, practicality, and the scalability.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Khushbu Rajput
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Ankush Mishra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| |
Collapse
|
6
|
McLuskie A, Brodie CN, Tricarico M, Gao C, Peters G, Naden AB, Mackay CL, Tan JC, Kumar A. Manganese catalysed dehydrogenative synthesis of polyureas from diformamide and diamines. Catal Sci Technol 2023; 13:3551-3557. [PMID: 37342794 PMCID: PMC10278093 DOI: 10.1039/d3cy00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
We report here the synthesis of polyureas from the dehydrogenative coupling of diamines and diformamides. The reaction is catalysed by a manganese pincer complex and releases H2 gas as the only by-product making the process atom-economic and sustainable. The reported method is greener in comparison to the current state-of-the-art production routes that involve diisocyanate and phosgene feedstock. We also report here the physical, morphological, and mechanical properties of synthesized polyureas. Based on our mechanistic studies, we suggest that the reaction proceeds via isocyanate intermediates formed by the manganese catalysed dehydrogenation of formamides.
Collapse
Affiliation(s)
- Angus McLuskie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Claire N Brodie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Michele Tricarico
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Chang Gao
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Gavin Peters
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Aaron B Naden
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | | | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Amit Kumar
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| |
Collapse
|
7
|
Direct Synthesis of Amides through Transamidation Using Dichloroimidazolinedione (DCID). Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Practical povidone iodine catalyzed transamidation from primary amides and amines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Chouhan KK, Chowdhury D, Mukherjee A. Transamidation of aromatic amines with formamides using cyclic dihydrogen tetrametaphosphate. Org Biomol Chem 2022; 20:7929-7935. [PMID: 36155708 DOI: 10.1039/d2ob00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide fragments are found to be one of the key constituents in a wide range of natural products and pharmacologically active compounds. Herein, we report a simple and efficient procedure for transamidation with a cyclic dihydrogen tetrametaphosphate. The protocol is simple, does not require any additives, and encompasses a broad substrate scope. To comprehend the mechanism of the present methodology, detailed spectroscopic and kinetic studies were undertaken.
Collapse
Affiliation(s)
- Kishor Kumar Chouhan
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Deep Chowdhury
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| | - Arup Mukherjee
- Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur-492015, Chhattisgarh, India.
| |
Collapse
|
10
|
Yu X, Tang Z, He K, Li W, Lin J, Jin Y. Catalyst-free highly regioselective hydrated ring-opening and formylation of quinazolinones. Org Biomol Chem 2022; 20:6654-6658. [PMID: 35938290 DOI: 10.1039/d2ob01234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free method for the highly regioselective hydrated ring-opening and formylation of quinazolinones was developed. This reaction realized the direct arylation of two nitrogen atoms on quinazolinones and realized the regioselective ring-opening of quinazolinone and subsequent acylation of methyleneamine through the nucleophilic addition of a water molecule to an imine carbon atom. It showed reasonable functional group compatibility and provided one-pot access to a variety of N-arylformyl derivatives in moderate to excellent yields.
Collapse
Affiliation(s)
- Xianglin Yu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Kun He
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
11
|
Shirvani P, Fayyazi N, Van Belle S, Debyser Z, Christ F, Saghaie L, Fassihi A. Design, synthesis, in silico studies, and antiproliferative evaluations of novel indolin-2-one derivatives containing 3-hydroxy-4-pyridinone fragment. Bioorg Med Chem Lett 2022; 70:128784. [PMID: 35569690 DOI: 10.1016/j.bmcl.2022.128784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML. Especially, compound 10k was found to be more potent against AML (EC50 = 0.69 μM) compare to the other halogen-substituted derivatives. FMS-like tyrosine kinase 3 (FLT3) is known to be expressed in AML cancer cells. The molecular docking studies demonstrated that our prepared compounds were potentially bound to AML active site through essential H-bond and other vital interactions with critical binding residues.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Neda Fayyazi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siska Van Belle
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Frauke Christ
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| |
Collapse
|
12
|
Rajan IAPS, Subramani M, Pushparathinam G, Rajendran S. Environmentally Benign Transamidation Protocol for Weakly Nucleophilic Aromatic Amines with N‐Acyl‐2‐piperidinones: Catalyst, Additive, Base and Solvent‐Free Condition. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Saravanakumar Rajendran
- Vellore Institute of Technology, Chennai Chemistry Division Vandalur-Kelambakkam Road 6200127 Chennai INDIA
| |
Collapse
|
13
|
Kang B, Shimizu Y, Tamura Y, Fukuda E, Hamamoto KI, Uchida Y, Yasuno Y, Nakayama A, Satoh T, Kuse M, Shinada T. Formylation Reaction of Amines Using N-Formylcarbazole. Chem Pharm Bull (Tokyo) 2022; 70:492-497. [PMID: 35786568 DOI: 10.1248/cpb.c22-00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formamides are useful starting materials for pharmaceutical syntheses. Although various synthetic methods have been documented in this regard, the use of N-formylcarbazole as a formylation reagent for amines has not yet been reported. We report here the first examples of the use of N-formylcarbazole for the formylation of amines. The characteristic reactivity of N-formylcarbazole enables the selective formylation of sterically less hindered aliphatic primary and secondary amines. In contrast, sterically bulkier amines and weakly nucleophilic amines such as anilines are less reactive under the reaction conditions.
Collapse
Affiliation(s)
- Bubwoong Kang
- Graduate School of Agricultural Science, Kobe University
| | - Yuki Shimizu
- Graduate School of Agricultural Science, Kobe University
| | - Yusaku Tamura
- Graduate School of Science, Osaka City University (Currently known as Osaka Metropolitan University)
| | - Eigo Fukuda
- Graduate School of Science, Osaka City University (Currently known as Osaka Metropolitan University)
| | - Ken-Ichiro Hamamoto
- Graduate School of Science, Osaka City University (Currently known as Osaka Metropolitan University)
| | | | - Yoko Yasuno
- Graduate School of Science, Osaka City University (Currently known as Osaka Metropolitan University)
| | - Atsushi Nakayama
- Graduate School of Science, Osaka City University (Currently known as Osaka Metropolitan University)
| | - Tetsuya Satoh
- Graduate School of Science, Osaka City University (Currently known as Osaka Metropolitan University)
| | - Masaki Kuse
- Graduate School of Agricultural Science, Kobe University
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University (Currently known as Osaka Metropolitan University)
| |
Collapse
|
14
|
Substrate-controlled selective acylation of quinazolinones: Access to 2-benzamido-N-formylbenzamides and 3-benzoylquinazolinones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N-C(O) Activation by Amide-to-Acyl Iodide Re-routing. Angew Chem Int Ed Engl 2022; 61:e202202794. [PMID: 35355386 DOI: 10.1002/anie.202202794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/20/2022]
Abstract
The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re-route the reactivity of unactivated N,N-dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide-to-amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C-N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late-stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad-ranging applications in chemical synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Qun Wang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Long Liu
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Tianzeng Huang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
16
|
Kumar V, Dhawan S, Bala R, Girase PS, Singh P, Karpoormath R. Metal-free direct annulation of 2-aminophenols and 2-aminothiophenols with unactivated amides through transamidation: Access to polysubstituted benzoxazole and benzothiazole derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N–C(O) Activation via Amide‐to‐Acyl Iodide Re‐Routing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongxu Zuo
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Qun Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Long Liu
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Tianzeng Huang
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Michal Szostak
- Rutgers University Newark Department of Chemistry UNITED STATES
| | - Tieqiao Chen
- Hainan University College of Chemical Engineering and Technology No. 58, Renmin Avenue, Meilan District 570228 Haikou CHINA
| |
Collapse
|
18
|
Girase PS, Kumar V, Dhawan S, Karpoormath R. Facile Synthesis of Amides through Transamidation with Iodine under Neat Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202103237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pankaj S. Girase
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
19
|
Jang M, Lim T, Park BY, Han MS. Metal-Free, Rapid, and Highly Chemoselective Reduction of Aromatic Nitro Compounds at Room Temperature. J Org Chem 2022; 87:910-919. [PMID: 34983185 DOI: 10.1021/acs.joc.1c01431] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, we developed a metal-free and highly chemoselective method for the reduction of aromatic nitro compounds. This reduction was performed using tetrahydroxydiboron [B2(OH)4] as the reductant and 4,4'-bipyridine as the organocatalyst and could be completed within 5 min at room temperature. Under optimal conditions, nitroarenes with sensitive functional groups, such as vinyl, ethynyl, carbonyl, and halogen, were converted into the corresponding anilines with excellent selectivity while avoiding the undesirable reduction of the sensitive functional groups.
Collapse
Affiliation(s)
- Mingyeong Jang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Taeho Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byoung Yong Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
20
|
Zhang C, Zhang Y, Liang Q, Zhang G, Yang W, Li N, Qin G, Zhang G. Formamidation of a wide range of substituted and functionalized amines with CO and a base. Org Chem Front 2022. [DOI: 10.1039/d2qo01312f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have developed a base mediated formamidation of amines with CO under mild conditions, which allows for the synthesis of a wide range of aromatic and aliphatic formamides in high yields and gram amounts in the absence of a transition metal.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
- Taiyuan University of Technology, Taiyuan, 030001, P. R. China
| | - Yushuang Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Qianqian Liang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guohui Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Wei Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Nanwen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, P. R. China
| | - Guoying Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| |
Collapse
|
21
|
Wang S, Yang J, Li D, Yang J. Copper‐Catalyzed Cascade N‐Dealkylation/N‐Methyl Oxidation of Aromatic Amines by Using TEMPO and Oxygen as Oxidants. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shihaozhi Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jiale Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Dianjun Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University Yinchuan 750021 China
| |
Collapse
|
22
|
Jiang J, Li L, Zhang L, Chen Q, Sun H, Liao S, Li C, Zhang L. Organophosphoric Acid Promoted Transamidation: Using
N
,
N
‐Dimethylformamide and
N
,
N
‐Dimethylacetamide as the Acyl Sources. ChemistrySelect 2021. [DOI: 10.1002/slct.202103932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Linlin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Ling Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Qian Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Hao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Shanggao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Chun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| | - Lin Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences Guizhou Medical University 550004 Guiyang China
| |
Collapse
|
23
|
Kumar V, Dhawan S, Girase PS, Singh P, Karpoormath R. An Environmentally Benign, Catalyst‐Free N−C Bond Cleavage/Formation of Primary, Secondary, and Tertiary Unactivated Amides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Pankaj Sanjay Girase
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Parvesh Singh
- School of Chemistry and Physics University of KwaZulu-Natal P/Bag X54001, Westville Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
24
|
Muzart J. A Journey from June 2018 to October 2021 with N, N-Dimethylformamide and N, N-Dimethylacetamide as Reactants. Molecules 2021; 26:6374. [PMID: 34770783 PMCID: PMC8587108 DOI: 10.3390/molecules26216374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
A rich array of reactions occur using N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMAc) as reactants, these two amides being able to deliver their own H, C, N, and O atoms for the synthesis of a variety of compounds. This account highlights the literature published since June 2018, completing previous reviews by the author.
Collapse
Affiliation(s)
- Jacques Muzart
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, CEDEX 2, 51687 Reims, France
| |
Collapse
|
25
|
Mishra K, Datta Khanal H, Rok Lee Y. Facile
N
‐Formylation of Amines on Magnetic Fe
3
O
4
−CuO Nanocomposites. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kanchan Mishra
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
26
|
Lai H, Xu J, Lin J, Zha D. Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. Org Biomol Chem 2021; 19:7621-7626. [PMID: 34308463 DOI: 10.1039/d1ob01054a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoindolinones are ubiquitous structural motifs in natural products and pharmaceuticals. Establishing an efficient method for structural modification of isoindolinones could significantly facilitate new drug development. Herein, we describe copper-promoted direct amidation of isoindolinone scaffolds mediated by sodium persulfate. The method exhibits mild reaction conditions and high site-selectivity, and enables the structural modification of the drug indobufen ester with various amides with yields of 49 to 98%. It is also gram-scalable. Additionally, the reaction mechanism appears to involve a radical and a carbocationic pathway.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China. and Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
27
|
Kumar A, Sharma P, Sharma N, Kumar Y, Mahajan D. Catalyst free N-formylation of aromatic and aliphatic amines exploiting reductive formylation of CO 2 using NaBH 4. RSC Adv 2021; 11:25777-25787. [PMID: 35478907 PMCID: PMC9037105 DOI: 10.1039/d1ra04848a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we report a sustainable approach for N-formylation of aromatic as well as aliphatic amines using sodium borohydride and carbon dioxide gas. The developed approach is catalyst free, and does not need pressure or a specialized reaction assembly. The reductive formylation of CO2 with sodium borohydride generates formoxy borohydride species in situ, as confirmed by 1H and 11B NMR spectroscopy. The in situ formation of formoxy borohydride species is prominent in formamide based solvents and is critical for the success of the N-formylation reactions. The formoxy borohydride is also found to promote transamidation reactions as a competitive pathway along with reductive functionalization of CO2 with amine leading to N-formylation of amines.
Collapse
Affiliation(s)
- Arun Kumar
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Pankaj Sharma
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Nidhi Sharma
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Yashwant Kumar
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Dinesh Mahajan
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| |
Collapse
|
28
|
Feng FF, Liu XY, Cheung CW, Ma JA. Tungsten-Catalyzed Transamidation of Tertiary Alkyl Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang-Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xuan-Yu Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
29
|
Xin Y, Shen X, Liu H, Han B. Selective Utilization of N-acetyl Groups in Chitin for Transamidation of Amines. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.634983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selective transformation of chitin into various renewable N-containing chemicals and medicines has attracted increasing attention. However, the N-acetyl groups in chitin construct strong hydrogen bond networks, which restricts its depolymerization and transformation. The selective conversion of robust chitin commonly requires considerable base catalysts to remove the N-acetyl group as a byproduct in advance, which is non-compliance with the principle of atomic economy. Herein, for the first time we demonstrate a novel approach to achieve the selective utilization of the N-acetyl group in chitin for transamidation of chitin with amines. A series of amine derivatives, mainly including aliphatic amine, cyclic amine and functionalized aromatic amine, could be selectively converted into the corresponding amide products frequently found in pharmaceuticals. Furthermore, the solid residue after removing the acetyl group (denoted as De-chitin) with the sufficient exposure of -NH2 groups as a solid base catalyst shows excellent performance in the aldol condensation reaction of furfural and acetone to produce fuel precursors. Our process provides a strategy that exploiting every functional group adequately in substrates to obtain value-added chemicals.
Collapse
|
30
|
Wang Z, Matsumoto A, Maruoka K. Efficient cleavage of tertiary amide bonds via radical-polar crossover using a copper(ii) bromide/Selectfluor hybrid system. Chem Sci 2020; 11:12323-12328. [PMID: 34094440 PMCID: PMC8163011 DOI: 10.1039/d0sc05137c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
A novel approach for the efficient cleavage of the amide bonds in tertiary amides is reported. Based on the selective radical abstraction of a benzylic hydrogen atom by a CuBr2/Selectfluor hybrid system followed by a selective cleavage of an N-C bond, an acyl fluoride intermediate is formed. This intermediate may then be derivatized in a one-pot fashion. The reaction proceeds under mild conditions and exhibits a broad substrate scope with respect to the tertiary amide moiety as well as to nitrogen, oxygen, and carbon nucleophiles for the subsequent derivatization. Mechanistic studies suggest that the present reaction proceeds via a radical-polar crossover process that involves benzylic carbon radicals generated by the selective radical abstraction of a benzylic hydrogen atom by the CuBr2/Selectfluor hybrid system. Furthermore, a synthetic application of this method for the selective cleavage of peptides is described.
Collapse
Affiliation(s)
- Zhe Wang
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
31
|
Kang B, Yasuno Y, Okamura H, Sakai A, Satoh T, Kuse M, Shinada T. N-Acylcarbazole as a Selective Transamidation Reagent. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bubwoong Kang
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Hironori Okamura
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Asumi Sakai
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Tetsuya Satoh
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Masaki Kuse
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
32
|
Omprakash Rathi J, Subray Shankarling G. Recent Advances in the Protection of Amine Functionality: A Review. ChemistrySelect 2020. [DOI: 10.1002/slct.202000764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jyoti Omprakash Rathi
- Department of Dyestuff TechnologyInstitute of Chemical Technology N. P. Marg, Matunga (E) Mumbai 400 019 India
| | - Ganapati Subray Shankarling
- Department of Dyestuff TechnologyInstitute of Chemical Technology N. P. Marg, Matunga (E) Mumbai 400 019 India
- Department of Dyestuff TechnologyInstitute of Chemical Technology N. P. Marg, Matunga (E) Mumbai 400 019 India
| |
Collapse
|
33
|
Laclef S, Kolympadi Marković M, Marković D. Amide Synthesis by Transamidation of Primary Carboxamides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The amide functionality is one of the most important and widely used groups in nature and in medicinal and industrial chemistry. Because of its importance and as the actual synthetic methods suffer from major drawbacks, such as the use of a stoichiometric amount of an activating agent, epimerization and low atom economy, the development of new and efficient amide bond forming reactions is needed. A number of greener and more effective strategies have been studied and developed. The transamidation of primary amides is particularly attractive in terms of atom economy and as ammonia is the single byproduct. This review summarizes the advancements in metal-catalyzed and organocatalyzed transamidation methods. Lewis and Brønsted acid transamidation catalysts are reviewed as a separate group. The activation of primary amides by promoter, as well as catalyst- and promoter-free protocols, are also described. The proposed mechanisms and key intermediates of the depicted transamidation reactions are shown.1 Introduction2 Metal-Catalyzed Transamidations3 Organocatalyzed Transamidations4 Lewis and Brønsted Acid Catalysis5 Promoted Transamidation of Primary Amides6 Catalyst- and Promoter-Free Protocols7 Conclusion
Collapse
Affiliation(s)
- Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378 - Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne
| | | | | |
Collapse
|
34
|
Chen J, Xia Y, Lee S. Transamidation for the Synthesis of Primary Amides at Room Temperature. Org Lett 2020; 22:3504-3508. [DOI: 10.1021/acs.orglett.0c00958] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
35
|
Yu Y, Zhang Y, Sun C, Shi L, Wang W, Li H. Copper Promoted Aerobic Oxidative C(sp 3)-C(sp 3) Bond Cleavage of N-(2-(Pyridin-2-yl)-ethyl)anilines. J Org Chem 2020; 85:2725-2732. [PMID: 31939303 DOI: 10.1021/acs.joc.9b02919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy of aerobic oxidative C(sp3)-C(sp3) bond cleavage of N-ethylaniline derivatives bearing azaarenes for the synthesis of N-aryl formamides has been developed. This approach was carried out smoothly with the CuI/TEMPO/air system to give N-aryl formamides in yields of 50-90%. With this methodology, a mutagenically active compound was constructed in 90% yield. Moreover, the reaction also provided a one-pot synthetic tool for accessing a promoter of hematopoietic stem cells by difunctionalization in 61% yield.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yong Zhang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Chengyu Sun
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Lei Shi
- Corporate R&D Division , Firmenich Aromatics (China) Co., Ltd. , Shanghai 201108 , China
| | - Wei Wang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,Department of Pharmacology and Toxicology and BIO5 Institute , University of Arizona , 1703 E. Mabel Street , P.O. Box 210207, Tucson , Arizona 85721-0207 , United States
| | - Hao Li
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
36
|
Zhou XY, Chen X, Yang D. Iodine and Brønsted acid catalyzed C–C bond cleavage of 1,3-diketones for the acylation of amines. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1691736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Dan Yang
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
37
|
Ghosh T, Jana S, Dash J. KOtBu-Promoted Transition-Metal-Free Transamidation of Primary and Tertiary Amides with Amines. Org Lett 2019; 21:6690-6694. [DOI: 10.1021/acs.orglett.9b02306] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tridev Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Snehasish Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
38
|
|
39
|
Subramani M, Rajendran SK. Mild, Metal-Free and Protection-Free Transamidation of N-Acyl-2-piperidones to Amino Acids, Amino Alcohols and Aliphatic Amines and Esterification of N-Acyl-2-piperidones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Muthuraman Subramani
- Chemistry Division; School of Advanced Sciences; Vellore Institute of Technology, Chennai; Chennai - 600127 Tamilnadu India
| | - Saravana Kumar Rajendran
- Chemistry Division; School of Advanced Sciences; Vellore Institute of Technology, Chennai; Chennai - 600127 Tamilnadu India
| |
Collapse
|
40
|
Yu S, Ho Song K, Lee S. Metal‐Free Transamidation of Primary Amides using Trimethylsilyl Chloride. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Subeen Yu
- Department of ChemistryChonnam National University Gwangju 61186 Republic of Korea
| | - Kwang Ho Song
- Department of Chemical & Biological EngineeringKorea University Seoul 02841 Republic of Korea
| | - Sunwoo Lee
- Department of ChemistryChonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
41
|
Xu ZW, Xu WY, Pei XJ, Tang F, Feng YS. An efficient method for the N-formylation of amines under catalyst- and additive-free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Patel KP, Gayakwad EM, Patil VV, Shankarling GS. Graphene Oxide: A Metal‐Free Carbocatalyst for the Synthesis of Diverse Amides under Solvent‐Free Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801673] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khushbu P. Patel
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| | - Eknath M. Gayakwad
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| | - Vilas V. Patil
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| | - Ganapati S. Shankarling
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| |
Collapse
|