1
|
Seo D, Kwon S, Yoon G, Son T, Won C, Singh N, Kim D, Baek Y. Expanding the chemical space of flavins with pentacyclic architecture. Nat Commun 2025; 16:3561. [PMID: 40234447 PMCID: PMC12000593 DOI: 10.1038/s41467-025-58957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Inspired by the prominent redox and optical properties of natural flavins, synthetic flavins have found broad applications in organic, photochemical, and biochemical research. Tailoring these properties of flavins, however, remains a challenge. In this work, we present three pentacyclic flavins (C-PF, O-PF, and S-PF) that leverage a strategic molecular design to modify the flavin's electronic structure. Notably, the oxygen- and sulfur-linked pentacyclic flavins (O-PF and S-PF) exhibit deep-red and NIR emission, respectively, driven by enhanced π-conjugation, substituent effects, and charge separation upon excitation. These heteroatom-incorporated pentacyclic flavins exhibit unusual quasi-reversible oxidation, expanding both optical and redox limits of synthetic flavins. Comprehensive spectroscopic, structural, and computational analyses reveal how heteroatom incorporation within this five-ring-fused system unlocks redox and optical properties of flavin-derived chromophores.
Collapse
Affiliation(s)
- Dayeong Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seongyeon Kwon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon, Republic of Korea
| | - Gahye Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taeil Son
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Changhyeon Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Neetu Singh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yunjung Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Fukuda T, Miyake H, Iida H. Flavin-Catalyzed Chemoselective Aerobic Oxygenation of Heteroarylmethanes to Ketones. Org Lett 2025; 27:2885-2890. [PMID: 40094226 DOI: 10.1021/acs.orglett.5c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A novel flavin-catalyzed chemoselective aerobic oxygenation of arylheteroarylmethanes to ketones has been developed under metal-free and mild conditions. This catalytic system employs a cationic flavin to activate sp3 C-H bonds through the formation of pyridinium-flavin adducts, enabling precise proton and electron transfer for oxygen atom insertion. As a result, this method exhibits high chemoselectivity, effectively distinguishing between arylheteroarylmethanes and diarylmethanes.
Collapse
Affiliation(s)
- Tatsuki Fukuda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hazuki Miyake
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
3
|
Perumal K, Palanisamy N, Hemamalini V, Shankar B, Shanthi M, Ramesh S. Unveiling Na 2-Eosin Y-Catalyzed and Water-Assisted Visible-Light Activation of Oxygen Molecules for the Dicarbonylation of Pyrazole Amines. J Org Chem 2024; 89:13556-13574. [PMID: 39255784 DOI: 10.1021/acs.joc.4c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A novel approach employing visible light-mediated activation of triplet oxygen molecules has been established. The reaction occurs at room temperature between pyrazole amine and phenylglyoxal monohydrate in the presence of Na2-eosin Y. Water played the dual role of solvent and reagent/additive. Photoactivation of triplet oxygen species was used to demonstrate the initiation of the hydrogen atom transfer (HAT) process. The conversion of the reaction mixture was found to be dependent on the amount of water present. Control experiments confirmed the importance of light, the photocatalyst, oxygen, the base, and water. The process tolerated various substitutions in both pyrazole amine and phenylglyoxal derivatives, enabling the synthesis of various dicarbonylpyrazole amines 15 and pyrazolooxazine derivatives 16 in moderate to good yields. 2 equiv of phenylglyoxal 10 gave a different reaction pathway, yielding highly diastereoselective pyrazolooxazine derivatives, confirmed by X-ray diffraction analysis. Collectively, this sustainable and environmentally friendly synthetic technique offers a promising method for the efficient preparation of pyrazole-based heterocyclic compounds. The high regioselectivity observed during the formation of trans-tetrahydropyrazolo[3,4-d][1,3]oxazine has been clarified through computational methods. These investigations emphasize the underlying factors and mechanisms that encourage the formation of this specific product, providing valuable insights into the reaction's selectivity and efficiency.
Collapse
Affiliation(s)
- Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Nivedhitha Palanisamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Vijayakumar Hemamalini
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625 015, India
| | - Markabandhu Shanthi
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
4
|
Zubova E, Pokluda A, Dvořáková H, Krupička M, Cibulka R. Exploring the Reactivity of Flavins with Nucleophiles Using a Theoretical and Experimental Approach. Chempluschem 2024; 89:e202300547. [PMID: 38064649 DOI: 10.1002/cplu.202300547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Covalent adducts of flavin cofactors with nucleophiles play an important role in non-canonical function of flavoenzymes as well as in flavin-based catalysis. Herein, the interaction of flavin derivatives including substituted flavins (isoalloxazines), 1,10-ethylene-bridged flavinium salts, and non-substituted alloxazine and deazaflavin with selected nucleophiles was investigated using an experimental and computational approach. Triphenylphosphine or trimethylphosphine, 1-nitroethan-1-ide, and methoxide were selected as representatives of neutral soft, anionic soft, and hard nucleophiles, respectively. The interactions were investigated using UV/Vis and 1H NMR spectroscopy as well as by DFT calculations. The position of nucleophilic attack estimated using the calculated Gibbs free energy values was found to correspond with the experimental data, favouring the addition of phosphine and 1-nitroethan-1-ide into position N(5) and methoxide into position C(10a) of 1,10-ethylene-bridged flavinium salts. The calculated Gibbs free energy values were found to correlate with the experimental redox potentials of the flavin derivatives tested. These findings can be utilized as valuable tools for the design of artificial flavin-based catalytic systems or investigating the mechanism of flavoenzymes.
Collapse
Affiliation(s)
- Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Hana Dvořáková
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
5
|
Venkatraman RK, Tolba AH, Sølling TI, Cibulka R, El-Zohry AM. Ultrafast Events of Photoexcited Iron(III) Chloride for Activation of Benzylic C-H Bonds. J Phys Chem Lett 2024; 15:6202-6208. [PMID: 38836909 DOI: 10.1021/acs.jpclett.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The usage of rare-earth-metal catalysts in the synthesis of organic compounds is widespread in chemical industries but is limited owing to its environmental and economic costs. However, recent studies indicate that abundant-earth metals like iron(III) chloride can photocatalyze diverse organic transformations using blue-light LEDs. Still, the underlying mechanism behind such activity is debatable and controversial, especially in the absence of ultrafast spectroscopic results. To address this urgent challenge, we performed femtosecond time-resolved electronic absorption spectroscopy experiments of iron(III) chloride in selected organic solvents relevant to its photocatalytic applications. Our results show that the long-lived species [Fe(II) ← Cl•]* is primarily responsible for both oxidizing the organic substrate and reducing molecular oxygen through the diffusion process, leading to the final product and regenerating the photocatalyst rather than the most widely proposed free chloride radical (Cl•). Our study will guide the rational design of efficient earth-abundant photocatalysts.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Amal Hassan Tolba
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Chemistry Department, Faculty of Science, Assiut University, Assiut 2074020, Egypt
| | - Theis I Sølling
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ahmed M El-Zohry
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Shiogai Y, Oka M, Miyake H, Iida H. Aerobic oxidative synthesis of benzimidazoles by flavin photocatalysis. Org Biomol Chem 2024; 22:4450-4454. [PMID: 38753213 DOI: 10.1039/d4ob00360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Flavin photocatalysis were utilised for an aerobic oxidative reaction between arylamines and o-phenylenediamine. This metal-free reaction proceeded in methanol under visible light irradiation and consumed only atmospheric molecular oxygen, providing a novel eco-friendly method for the synthesis of benzimidazoles.
Collapse
Affiliation(s)
- Yuta Shiogai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| | - Hazuki Miyake
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| |
Collapse
|
7
|
Bo C, Li M, Chen F, Liu J, Dai B, Liu N. Visible-Light-Initiated Air-Oxygenation of Alkylarenes to Carbonyls Mediated by Carbon Tetrabromide in Water. CHEMSUSCHEM 2024; 17:e202301015. [PMID: 37661194 DOI: 10.1002/cssc.202301015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Synthesizing benzyl skeleton derivatives via direct oxidation of functionalized benzylic C-H bonds has received extensive research attention. Herein, a method was developed to prepare carbonyl compounds via photoinduced aerobic oxidation of ubiquitous benzylic C-H bonds mediated by bromine radicals and tribromomethane radicals. This method employed commercially available CBr4 as a hydrogen atom transfer reagent precursor, air as an oxidant, water as a reaction solvent, and tetrabutylammonium perchlorate (TBAPC) as an additive under mild conditions. A series of substrates bearing different functional groups was converted to aromatic carbonyls in moderate to good yields. Moreover, a low environmental factor (E-factor value=0.45) showed that the proposed method is ecofriendly and environmentally sustainable.
Collapse
Affiliation(s)
- Chunbo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
8
|
Das B, Sahoo SR, Das A, Pathak B, Sarkar D. Sustainable Organic Photocatalysis for Site-Selective Hydrazocoupling of Electron-Rich Arenes. Org Lett 2023; 25:7733-7738. [PMID: 37853522 DOI: 10.1021/acs.orglett.3c03137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
An efficient photocatalytic para- and ortho-selective amination and aminative dearomatization of phenols, naphthols, and anilines with azodicarboxylates was developed using riboflavin tetraacetate (RFTA) as an organic photocatalyst. The site selectivity was controlled using tetrabutylammonium bromide (TBAB), which also acts as a phase transfer catalyst. The reaction conditions are simple and mild, giving high regioselectivity with good to excellent yields. A broad substrate scope and nice functional group tolerance with scalability and post-functionalization make this protocol both useful and regioselective.
Collapse
Affiliation(s)
- Biswajit Das
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Sushree Ranjan Sahoo
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Amitabha Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh m453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh m453552, India
| | - Debayan Sarkar
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh m453552, India
| |
Collapse
|
9
|
Yang X, Guo Y, Tong H, Guo H, Liu R, Zhou R. Photochemical Hydrogen Atom Transfer Catalysis for Dehydrogenation of Alcohols To Form Carbonyls. Org Lett 2023. [PMID: 37470382 DOI: 10.1021/acs.orglett.3c01917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Controllable oxidation of alcohols to carbonyls is one of the fundamental transformations in organic chemistry. Herein, we report an unprecedented visible-light-mediated metal-free oxidation of alcohols to carbonyls with hydrogen evolution. By synergistic combination of organophotocatalyst 4CzIPN and a thiol hydrogen atom transfer catalyst, a broad range of alcohols, including primary and secondary benzylic alcohols as well as aliphatic alcohols, were readily oxidized to carbonyls in moderate to excellent yields. A site-selective oxidation has also been achieved by this protocol. Mechanistic investigation indicates that the oxidation proceeds through an oxidative radical-polar crossover process to obtain an α-oxy carbon cation.
Collapse
Affiliation(s)
- Xiaona Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Yunfei Guo
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Hong'en Tong
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Hongyu Guo
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Rongfang Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, People's Republic of China
| | - Rong Zhou
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
10
|
Shiogai Y, Oka M, Iida H. Aerobic cross-dehydrogenative coupling of toluenes and o-phenylenediamines by flavin photocatalysis for the facile synthesis of benzimidazoles. Org Biomol Chem 2023; 21:2081-2085. [PMID: 36804653 DOI: 10.1039/d3ob00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Herein, we demonstrate a green atom-economical synthesis of benzimidazoles via the flavin-photocatalysed aerobic oxidative cross-dehydrogenative coupling of toluenes and o-phenylenediamines. The proposed metal-free reaction proceeds in methanol/H2O under visible light irradiation by consuming only molecular oxygen from atmospheric air and produces only water as waste.
Collapse
Affiliation(s)
- Yuta Shiogai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| | - Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan.
| |
Collapse
|
11
|
Nguyen K, Nguyen V, Tran H, Pham P. Organo-photocatalytic C-H bond oxidation: an operationally simple and scalable method to prepare ketones with ambient air. RSC Adv 2023; 13:7168-7178. [PMID: 36891491 PMCID: PMC9986805 DOI: 10.1039/d3ra00332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative C-H functionalization with O2 is a sustainable strategy to convert feedstock-like chemicals into valuable products. Nevertheless, eco-friendly O2-utilizing chemical processes, which are scalable yet operationally simple, are challenging to develop. Here, we report our efforts, via organo-photocatalysis, in devising such protocols for catalytic C-H bond oxidation of alcohols and alkylbenzenes to ketones using ambient air as the oxidant. The protocols employed tetrabutylammonium anthraquinone-2-sulfonate as the organic photocatalyst which is readily available from a scalable ion exchange of inexpensive salts and is easy to separate from neutral organic products. Cobalt(ii) acetylacetonate was found to be greatly instrumental to oxidation of alcohols and therefore was included as an additive in evaluating the alcohol scope. The protocols employed a nontoxic solvent, could accommodate a variety of functional groups, and were readily scaled to 500 mmol scale in a simple batch setting using round-bottom flasks and ambient air. A preliminary mechanistic study of C-H bond oxidation of alcohols supported the validity of one possible mechanistic pathway, nested in a more complex network of potential pathways, in which the anthraquinone form - the oxidized form - of the photocatalyst activates alcohols and the anthrahydroquinone form - the relevant reduced form of the photocatalyst - activates O2. A detailed mechanism, which reflected such a pathway and was consistent with previously accepted mechanisms, was proposed to account for formation of ketones from aerobic C-H bond oxidation of both alcohols and alkylbenzenes.
Collapse
Affiliation(s)
- Ky Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Van Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Hieu Tran
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Phong Pham
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| |
Collapse
|
12
|
Tambe SD, Cho EJ. Organophotocatalytic oxidation of alcohols to carboxylic acids. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shrikant D. Tambe
- Department of Chemistry Chung‐Ang University Dongjak‐Gu, Seoul Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry Chung‐Ang University Dongjak‐Gu, Seoul Republic of Korea
| |
Collapse
|
13
|
Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry 2022; 28:e202200768. [PMID: 35538649 PMCID: PMC9541856 DOI: 10.1002/chem.202200768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Collapse
Affiliation(s)
- Tetiana Pavlovska
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - David Král Lesný
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Eva Svobodová
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Irena Hoskovcová
- Department of Inorganic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Nataliya Archipowa
- Institute for Biophysics and Physical BiochemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| |
Collapse
|
14
|
Mizushima T, Oka M, Imada Y, Iida H. Low‐Voltage‐Driven Electrochemical Aerobic Oxygenation with Flavin Catalysis: Chemoselective Synthesis of Sulfoxides from Sulfides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Taiga Mizushima
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| | - Marina Oka
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| | - Yasushi Imada
- Department of Applied Chemistry Tokushima University Minamijosanjima Tokushima 770-8506 Japan
| | - Hiroki Iida
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue Shimane 690-8504 Japan
| |
Collapse
|
15
|
Wei W, Mazzotta F, Lieberwirth I, Landfester K, Ferguson CTJ, Zhang KAI. Aerobic Photobiocatalysis Enabled by Combining Core-Shell Nanophotoreactors and Native Enzymes. J Am Chem Soc 2022; 144:7320-7326. [PMID: 35363487 PMCID: PMC9052756 DOI: 10.1021/jacs.2c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biocatalysis has become a powerful tool in synthetic chemistry, where enzymes are used to produce highly selective products under mild conditions. Using photocatalytically regenerated cofactors in synergistic combination with enzymes in a cascade fashion offers an efficient synthetic route to produce specific compounds. However, the combination of enzymes and photocatalysts has been limited due to the rapid degradation of the biomaterials by photogenerated reactive oxygen species, which denature and deactivate the enzymatic material. Here, we design core-shell structured porous nano-photoreactors for highly stable and recyclable photobiocatalysis under aerobic conditions. The enzymatic cofactor NAD+ from NADH can be efficiently regenerated by the photoactive organosilica core, while photogenerated active oxygen species are trapped and deactivated through the non-photoactive shell, protecting the enzymatic material. The versatility of these photocatalytic core-shell nanoreactors was demonstrated in tandem with two different enzymatic systems, glycerol dehydrogenase and glucose 1-dehydrogenase, where long-term enzyme stability was observed for the core-shell photocatalytic system.
Collapse
Affiliation(s)
- Wenxin Wei
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Francesca Mazzotta
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,
| | - Calum T. J. Ferguson
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,
| | - Kai A. I. Zhang
- Max
Planck institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany,Department
of Materials Science, Fudan University, 200433 Shanghai, People’s Republic of China,;
| |
Collapse
|
16
|
Torregrosa-Chinillach A, Chinchilla R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules 2022; 27:497. [PMID: 35056812 PMCID: PMC8780101 DOI: 10.3390/molecules27020497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
| | - Rafael Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain;
| |
Collapse
|
17
|
Mouli MSSV, Mishra AK. Modulating catalytic activity of a modified flavin analogue via judicially positioned metal ion toward aerobic sulphoxidation. RSC Adv 2022; 12:3990-3995. [PMID: 35425444 PMCID: PMC8981109 DOI: 10.1039/d1ra06558k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 01/24/2023] Open
Abstract
This manuscript describes the synthesis, spectroscopic and crystallographic characterization of a cadmium complex of 10-propoylisoalloxazine-7-carboxylic acid (Flc-Cd). Catalytic activity of Flc-Cd towards aerobic sulphoxidation reaction was investigated in the presence of l-ascorbic acid as the reducing agent. Notably the neutral un-metalated flavin analogue did not show any significant catalytic activity. The design strategy for Flc provides a close proximity of the metal centre to the flavin core without compromising the catalytic site thereby assisting the product formation when compared to unmetallated Flc. Minor enantioselectivity is also observed in cases where unsymmetrical sulphides were used; indicative of the possible involvement of chiral l-ascorbic acid in the intermediate formation. Design and synthesis of a catalytically efficient metal-flavin complex toward aerobic sulphoxidation was achieved via judicially positioning the metal ion near the catalytic site thereby assisting the intermediate formation.![]()
Collapse
Affiliation(s)
- M. S. S. Vinod Mouli
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi-502284, India
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi-502284, India
| |
Collapse
|
18
|
Liu Y, Wang Z, Meng J, Li C, Sun K. Research Progress of Photoelectric Co-catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Wang YH, Yang Q, Walsh PJ, Schelter EJ. Light-mediated aerobic oxidation of C(sp 3)–H bonds by a Ce( iv) hexachloride complex. Org Chem Front 2022. [DOI: 10.1039/d2qo00362g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A photochemical C(sp3)–H oxygenation of arene and alkane substrates (including methane) catalyzed by [NEt4]2[CeIVCl6] under mild conditions (1 atm, 25 °C) is described.
Collapse
Affiliation(s)
- Yu-Heng Wang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Qiaomu Yang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick J. Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric J. Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
20
|
Dong Z, Pan H, Yang L, Fan L, Xiao Y, Chen J, Wang W. Porous organic polymer immobilized copper nanoparticles as heterogeneous catalyst for efficient benzylic C–H bond oxidation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Gorelik DJ, Dimakos V, Adrianov T, Taylor MS. Photocatalytic, site-selective oxidations of carbohydrates. Chem Commun (Camb) 2021; 57:12135-12138. [PMID: 34723300 DOI: 10.1039/d1cc05124e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Site-selective oxidations of carbohydrates, employing acridinium photocatalysis and quinuclidine hydrogen atom transfer catalysis, are presented. Protocols have been developed for oxidations of all-equatorial carbohydrates as well as those containing cis-1,2-diols. Site-selectivity reflects the relative rates of hydrogen atom transfer from the carbohydrate C-H bonds, and can be enhanced using a phosphate hydrogen-bonding or boronic acid catalyst.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Timur Adrianov
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
22
|
Babaee S, Zarei M, Zolfigol MA. MOF-Zn-NHC as an efficient N-heterocyclic carbene catalyst for aerobic oxidation of aldehydes to their corresponding carboxylic acids via a cooperative geminal anomeric based oxidation. RSC Adv 2021; 11:36230-36236. [PMID: 35492781 PMCID: PMC9043340 DOI: 10.1039/d1ra05494e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022] Open
Abstract
As an efficient heterogenous N-heterocyclic carbene (NHC) catalyst, MOF-Zn-NHC was used in the aerobic oxidation of aryl aldehydes to their corresponding carbocyclic acids via an anomeric based oxidation. Features such as mild reaction conditions and no need for a co-catalyst or oxidative reagent can be considered as the major advantages of the presented method in this study. As an efficient heterogenous N-heterocyclic carbene (NHC) catalyst, MOF-Zn-NHC was used in the aerobic oxidation of aryl aldehydes to their corresponding carbocyclic acids via an anomeric based oxidation.![]()
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| |
Collapse
|
23
|
Hassan Tolba A, Krupička M, Chudoba J, Cibulka R. Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative. Org Lett 2021; 23:6825-6830. [PMID: 34424722 DOI: 10.1021/acs.orglett.1c02391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report an effective, operationally simple, and environmentally friendly system for the synthesis of tertiary amides by the oxidative coupling of aromatic or aliphatic aldehydes with amines mediated by riboflavin tetraacetate (RFTA), an inexpensive organic photocatalyst, and visible light using oxygen as the sole oxidant. The method is based on the oxidative power of an excited flavin catalyst and the relatively low oxidation potential of the hemiaminal formed by amine to aldehyde addition.
Collapse
|
24
|
Takamatsu K, Kasai M, Nishizawa H, Suzuki R, Konno H. Aerobic oxidation of aldehydes to acids with N-hydroxyphthalimide derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Rehpenn A, Walter A, Storch G. Molecular Editing of Flavins for Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1458-2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe diverse activity of flavoenzymes in organic transformations has fascinated researchers for a long time. However, when applied outside an enzyme environment, the isolated flavin cofactor only shows largely reduced activity. This highlights the importance of embedding the reactive isoalloxazine core of flavins in defined surroundings. The latter include crucial non-covalent interactions with amino acid side chains or backbone as well as controlled access to reactants such as molecular oxygen. Nevertheless, molecular flavins are increasingly applied in the organic laboratory as valuable organocatalysts. Chemical modification of the parent isoalloxazine structure is of particular interest in this context in order to achieve reactivity and selectivity in transformations, which are so far only known with flavoenzymes or even unprecedented. This review aims to give a systematic overview of the reported designed flavin catalysts and highlights the impact of each structural alteration. It is intended to serve as a source of information when comparing the performance of known catalysts, but also when designing new flavins. Over the last few decades, molecular flavin catalysis has emerged from proof-of-concept reactions to increasingly sophisticated transformations. This stimulates anticipating new flavin catalyst designs for solving contemporary challenges in organic synthesis.1 Introduction2 N1-Modification3 N3-Modification4 N5-Modification5 C6–C9-Modification6 N10-Modification7 Conclusion
Collapse
|
26
|
Song Y, Wang X, Wang L, Dong Z, Fan S, Huang P, Zeng J, Cheng P. Visible-light promoted allylation of N-substituted tetrahydroisoquinoline using riboflavin tetra-acetate as photocatalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Oroujzadeh N, Baradaran Z, Sedrpoushan A. An efficient heterogeneous Cu(I) complex for the catalytic oxidation of alcohols and sulfides: synthesis, characterization, and investigation of the catalyst activity. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1950698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nasrin Oroujzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Zahra Baradaran
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Alireza Sedrpoushan
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
28
|
Yedase GS, Kumar S, Stahl J, König B, Yatham VR. Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones. Beilstein J Org Chem 2021; 17:1727-1732. [PMID: 34367351 PMCID: PMC8313980 DOI: 10.3762/bjoc.17.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/16/2021] [Indexed: 01/25/2023] Open
Abstract
We have developed a cerium-photocatalyzed aerobic oxidation of primary and secondary benzylic alcohols to aldehydes and ketones using inexpensive CeCl3·7H2O as photocatalyst and air oxygen as the terminal oxidant.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| | - Sumit Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| | - Jessica Stahl
- Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany
| | - Burkhard König
- Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| |
Collapse
|
29
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University 410082 Changsha China
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University Holmgatan 10 SE-85170 Sundsvall Sweden
| |
Collapse
|
30
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021; 60:15686-15704. [PMID: 33368909 PMCID: PMC9545650 DOI: 10.1002/anie.202012707] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
This Minireview presents recent important homogenous aerobic oxidative reactions which are assisted by electron transfer mediators (ETMs). Compared with direct oxidation by molecular oxygen (O2 ), the use of a coupled catalyst system with ETMs leads to a lower overall energy barrier via stepwise electron transfer. This cooperative catalytic process significantly facilitates the transport of electrons from the reduced form of the substrate-selective redox catalyst (SSRCred ) to O2 , thereby increasing the efficiency of the aerobic oxidation. In this Minireview, we have summarized the advances accomplished in recent years in transition-metal-catalyzed as well as metal-free aerobic oxidations of organic molecules in the presence of ETMs. In addition, the recent progress of photochemical and electrochemical oxidative functionalization using ETMs and O2 as the terminal oxidant is also highlighted. Furthermore, the mechanisms of these transformations are showcased.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University410082ChangshaChina
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10SE-85170SundsvallSweden
| |
Collapse
|
31
|
Gu J, Wan Y, Ma H, Zhu H, Bu H, Zhou Y, Zhang W, Wu ZG, Li Y. Ferric ion concentration-controlled aerobic photo-oxidation of benzylic C–H bond with high selectivity and conversion. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Stricker F, Kölsch JC, Beil SB, Preiß S, Waldvogel SR, Opatz T, Besenius P. Facile access to foldable redox-active flavin-peptide conjugates. Org Biomol Chem 2021; 19:4483-4486. [PMID: 33960997 DOI: 10.1039/d1ob00414j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient approach for the synthesis of foldable redox-active flavin peptide conjugates was established. A model β-hairpin oligopeptide motif was utilized to demonstrate that azidolysine side-chains are readily functionalised with an alkyne-bearing flavine derivative. The folding equilibrium of the peptide backbone as well as the redox behaviour of the flavin moieties remains intact after the conjugation.
Collapse
Affiliation(s)
- Friedrich Stricker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Jonas Christopher Kölsch
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Sebastian B Beil
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany. and Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Sebastian Preiß
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany. and Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany. and Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
33
|
Liu J, Han S, Hu Y, Pao CW. Fabrication and characterization of a novel PMO containing riboflavin-5'-phosphate sodium salt for sensitive detection of pesticide ferbam. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Pokluda A, Anwar Z, Boguschová V, Anusiewicz I, Skurski P, Sikorski M, Cibulka R. Robust Photocatalytic Method Using Ethylene‐Bridged Flavinium Salts for the Aerobic Oxidation of Unactivated Benzylic Substrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Pokluda
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Zubair Anwar
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Veronika Boguschová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Iwona Anusiewicz
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Piotr Skurski
- Faculty of Chemistry University of Gdańsk Wita Stwosza 63 80–308 Gdańsk Poland
| | - Marek Sikorski
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61–614 Poznań Poland
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
35
|
Deng X, Qian R, Zhou H, Yu L. Organotellurium-catalyzed oxidative deoximation reactions using visible-light as the precise driving energy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
|
37
|
Murugesan K, Donabauer K, König B. Visible-Light-Promoted Metal-Free Synthesis of (Hetero)Aromatic Nitriles from C(sp 3 )-H Bonds*. Angew Chem Int Ed Engl 2021; 60:2439-2445. [PMID: 33053270 PMCID: PMC7898869 DOI: 10.1002/anie.202011815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Indexed: 01/18/2023]
Abstract
The metal-free activation of C(sp3 )-H bonds to value-added products is of paramount importance in organic synthesis. We report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photocatalytic process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as l-menthol, amino acids, and cholesterol derivatives. Furthermore, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments, and NMR spectroscopy as well as kinetic studies, all supporting the proposed catalytic cycle.
Collapse
Affiliation(s)
| | | | - Burkhard König
- Faculty of Chemistry and PharmacyUniversity of RegensburgGermany
| |
Collapse
|
38
|
Hartman T, Reisnerová M, Chudoba J, Svobodová E, Archipowa N, Kutta RJ, Cibulka R. Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. Chempluschem 2021; 86:373-386. [DOI: 10.1002/cplu.202000767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Tomáš Hartman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Martina Reisnerová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Josef Chudoba
- Central Laboratories University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry The University of Manchester Manchester M1 7DN United Kingdom
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry University of Regensburg 93040 Regensburg Germany
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
39
|
Dai P, Xu L. Visible-Light-Induced Benzylic C—H Oxygenation Reaction Using Tetrabutylammonium Tribromide as the Catalyst. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Zhang S, Yi D, Li G, Li L, Zhao G, Tang Z. Biomimetic alloxan-catalyzed intramolecular redox reaction with O2: One-pot atom-economic synthesis of sulfinyl-functionalized benzimidazoles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Srivastava V, Singh PK, Srivastava A, Singh PP. Synthetic applications of flavin photocatalysis: a review. RSC Adv 2021. [DOI: 10.1039/d1ra00925g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Encouraging developments in the field of photocatalysis in last decades, biomolecules namely flavins have been observed to act as a catalyst in several photoredox-catalysed synthetic methodologies.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Pravin K. Singh
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Arjita Srivastava
- Department of Chemistry
- CMP Degree College
- University of Allahabad
- Prayagraj 211002
- India
| | - Praveen P. Singh
- Department of Chemistry
- United College of Engineering & Research
- Prayagraj 211010
- India
| |
Collapse
|
42
|
Abstract
Photocatalytic deoximation reaction was found to be an autocatalytic process that occurs via free-radical mechanism. Understanding the mechanism may help chemical engineers to develop related techniques to avoid the decomposition of oximes.
Collapse
Affiliation(s)
- Hongjia Li
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Xiaobi Jing
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Yaocheng Shi
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
43
|
Murugesan K, Donabauer K, König B. Visible‐Light‐Promoted Metal‐Free Synthesis of (Hetero)Aromatic Nitriles from C(sp
3
)−H Bonds**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Germany
| |
Collapse
|
44
|
Insińska-Rak M, Prukała D, Golczak A, Fornal E, Sikorski M. Riboflavin degradation products; combined photochemical and mass spectrometry approach. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Mazzanti S, Savateev A. Emerging Concepts in Carbon Nitride Organic Photocatalysis. Chempluschem 2020; 85:2499-2517. [PMID: 33215877 DOI: 10.1002/cplu.202000606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Carbon nitrides encompass a class of transition-metal-free materials possessing numerous advantages such as low cost (few Euros per gram), high chemical stability, broad tunability of redox potentials and optical bandgap, recyclability, and a high absorption coefficient (>105 cm-1 ), which make them highly attractive for application in photoredox catalysis. In this Review, we classify carbon nitrides based on their unique properties, structure, and redox potentials. We summarize recently emerging concepts in heterogeneous carbon nitride photocatalysis, with an emphasis on the synthesis of organic compounds: 1) Illumination-Driven Electron Accumulation in Semiconductors and Exploitation (IDEASE); 2) singlet-triplet intersystem crossing in carbon nitride excited states and related energy transfer; 3) architectures of flow photoreactors; and 4) dual metal/carbon nitride photocatalysis. The objective of this Review is to provide a detailed overview regarding innovative research in carbon nitride photocatalysis focusing on these topics.
Collapse
Affiliation(s)
- Stefano Mazzanti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
46
|
González-Delgado JA, Romero MA, Boscá F, Arteaga JF, Pischel U. Visible Light-Gated Organocatalysis Using a Ru II -Photocage. Chemistry 2020; 26:14229-14235. [PMID: 32449554 DOI: 10.1002/chem.202001893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Indexed: 12/23/2022]
Abstract
The light-gated organocatalysis via the release of 4-N,N-dimethylaminopyridine (DMAP) by irradiation of the [Ru(bpy)2 (DMAP)2 ]2+ complex with visible light was investigated. As model reaction the acetylation of benzyl alcohols with acetic anhydride was chosen. The pre-catalyst releases one DMAP molecule on irradiation at wavelengths longer than 455 nm. The photochemical process was characterized by steady-state irradiation and ultrafast transient absorption spectroscopy. The latter enabled the observation of the 3 MLCT state and the spectral features of the penta-coordinated intermediate [Ru(bpy)2 (DMAP)]2+ . The released DMAP catalyzes the acetylation of a wide range of benzyl alcohols with chemical yields of up to 99 %. Control experiments revealed unequivocally that it is the released DMAP which takes the role of the catalyst.
Collapse
Affiliation(s)
- José A González-Delgado
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Miguel A Romero
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Francisco Boscá
- Instituto Universitario Mixto de Tecnología Química (ITQ-UPV), Universitat Politècnica de València, Av. de los Naranjos s/n, 46022, Valencia, Spain
| | - Jesús F Arteaga
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| | - Uwe Pischel
- CIQSO-Center for Research in Sustainable Chemistry and, Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071, Huelva, Spain
| |
Collapse
|
47
|
Okai H, Tanimoto K, Ohkado R, Iida H. Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C–N and C–S Bonds by Flavin–Iodine-Coupled Organocatalysis. Org Lett 2020; 22:8002-8006. [DOI: 10.1021/acs.orglett.0c02929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Kazumasa Tanimoto
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Ryoma Ohkado
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
48
|
Deng Z, Zhou D. Mechanisms of Csp
2
–H functionalization of aldehydes with triplet O
2
catalyzed by NHPI: A density functional theory investigation. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhe‐Peng Deng
- Research Institute Lanzhou Jiaotong University Lanzhou China
| | - Da‐Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Synthesis and Application of Functional Materials, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| |
Collapse
|
49
|
Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. J Org Chem 2020; 85:9096-9105. [PMID: 32569467 DOI: 10.1021/acs.joc.0c01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomimetic flavin organocatalysts oxidize nitromethane to formaldehyde and NOx-providing a relatively nontoxic, noncaustic, and inexpensive source for catalytic NO2 for aerobic TEMPO oxidations of alcohols, diols, and ethers. Alcohols were oxidized to aldehydes or ketones, cyclic ethers to esters, and terminal diols to lactones. In situ trapping of NOx and formaldehyde suggest an oxidative Nef process reminiscent of flavoprotein nitroalkane oxidase reactivity, which is achieved by relatively stable 1,10-bridged flavins. The metal-free flavin/NOx/TEMPO catalytic cycles are uniquely compatible, especially compared to other Nef and NOx-generating processes, and reveal selectivity over flavin-catalyzed sulfoxide formation. Aliphatic ethers were oxidized by this method, as demonstrated by the conversion of (-)-ambroxide to (+)-sclareolide.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Bikash Chouhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Thanh Thuy Vuong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
50
|
Wang D, Malmberg R, Pernik I, Prasad SKK, Roemer M, Venkatesan K, Schmidt TW, Keaveney ST, Messerle BA. Development of tethered dual catalysts: synergy between photo- and transition metal catalysts for enhanced catalysis. Chem Sci 2020; 11:6256-6267. [PMID: 32953021 PMCID: PMC7480183 DOI: 10.1039/d0sc02703k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
While dual photocatalysis-transition metal catalysis strategies are extensively reported, the majority of systems feature two separate catalysts, limiting the potential for synergistic interactions between the catalytic centres. In this work we synthesised a series of tethered dual catalysts allowing us to investigate this underexplored area of dual catalysis. In particular, Ir(i) or Ir(iii) complexes were tethered to a BODIPY photocatalyst through different tethering modes. Extensive characterisation, including transient absorption spectroscopy, cyclic voltammetry and X-ray absorption spectroscopy, suggest that there are synergistic interactions between the catalysts. The tethered dual catalysts were more effective at promoting photocatalytic oxidation and Ir-catalysed dihydroalkoxylation, relative to the un-tethered species, highlighting that increases in both photocatalysis and Ir catalysis can be achieved. The potential of these catalysts was further demonstrated through novel sequential reactivity, and through switchable reactivity that is controlled by external stimuli (heat or light).
Collapse
Affiliation(s)
- Danfeng Wang
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Robert Malmberg
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Indrek Pernik
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Shyamal K K Prasad
- ARC Centre of Excellence in Exciton Science , School of Chemistry , University of New South Wales , Kensington , NSW 2052 , Australia
| | - Max Roemer
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Koushik Venkatesan
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Timothy W Schmidt
- ARC Centre of Excellence in Exciton Science , School of Chemistry , University of New South Wales , Kensington , NSW 2052 , Australia
| | - Sinead T Keaveney
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| | - Barbara A Messerle
- Department of Molecular Sciences , Macquarie University , North Ryde , NSW 2109 , Australia . ;
| |
Collapse
|