1
|
Yang X, Chen L, Wan G, Liu J, Zhao B, Zhu H, Zhang Y. Two new constituents from the endophyte of Alternaria alternata and its anti-neuroinflammatory activity guided by molecular docking. Nat Prod Res 2025; 39:2140-2150. [PMID: 38084022 DOI: 10.1080/14786419.2023.2291705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2025]
Abstract
Two new compounds, 3-hydroxy-1-(3-hydroxy-5-methoxyphenyl)-2-methyl propan-1-one (1) and 1,2,6-trihydroxy-8-methoxy-2,3,3a,9b-tetrahydrocyclopenta[c] isochromen-5(1H)-one (2), along with nine known compounds 3-11, involving pyranones, phenylpropenoids and alkaloids, were obtained from Alternaria alternata, an endophyte isolated from Hypericum perforatum L. The structures were elucidated by extensive spectroscopic analyses, including 1D NMR, 2D NMR, HRESIMS, IR, UV spectroscopy. The absolute configuration was established via spectroscopy techniques and X-ray crystallisation method. Furthermore, guided by molecular docking, compounds 1 and 3 exhibited promising anti-neuroinflammatory activity in LPS-induced BV-2 microglial cells, with IC50 values of 0.9 ± 0.3 μM and 3.0 ± 0.4 μM respectively. Moreover, they effectively attenuated the LPS-induced elevation of NO, TNF-α, IL-6, and IL-1β production in BV-2 microglial cells. These findings diversify the metabolite of A. alternata and highlight their potential as leading compounds against neuroinflammatory-related diseases.
Collapse
Affiliation(s)
- Xiliang Yang
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Long Chen
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Guoqing Wan
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Binjie Zhao
- Institute of Pharmaceutical Process, Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang B, Li H, Chen T, Wei W, Liu G, Huang W, He B, Ye Y, Yan W. Two new sesquiterpene derivatives, dendocarbin B and bisaborosaol C with antifungal activity from the endophytic fungus Nigrospora chinensis GGY-3. Nat Prod Res 2024; 38:1478-1486. [PMID: 36451585 DOI: 10.1080/14786419.2022.2151011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022]
Abstract
Two novel sesquiterpene derivatives, dendocarbin B (1), bisaborosaol C (2), and nine known compounds (3-11), were isolated from Nigrospora chinensis GGY-3 derived from Ilex cornuta. The structures of new compounds were elucidated using HR-ESI-MS, 1 D and 2 D NMR spectra, X-ray diffraction analysis as well as ECD calculation and comparison. Compound 1 showed moderate antifungal activities against Rhizoctonia solani and Botrytis cinerea. Compounds 5 and 6 exhibited significant inhibitory activity against Phytophthora capsici, Magnaporthe oryzae and R. solani with EC50 values ranging from 13.91 to 29.49 μg/mL. Compounds 10 and 11 displayed moderate antibacterial effects on Bacillus subtilis and Xanthomonas oryzae pv. oryzae (Xoo), with MIC values of 16-64 μg/mL. Particularly, 11 presented strong antibacterial activity against Staphylococcus aureus with an MIC value of 4 μg/mL (2 μg/mL for streptomycin sulfate). In addition, compound 11 also possessed DPPH radical scavenging capability with an IC50 value of 14.80 μg/mL.
Collapse
Affiliation(s)
- Biao Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Hao Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Tianyu Chen
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, P. R. China
| | - Guiyou Liu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, P. R. China
| | - Weiqing Huang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Bo He
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, P. R. China
| |
Collapse
|
3
|
Mo S, Zhang Y, Jiang R, Zeng H, Huang Z, Yin J, Zhang S, Yao J, Wang J, Hu Z, Zhang Y. Dipeniroqueforins A-B and Peniroqueforin D: Eremophilane-Type Sesquiterpenoid Derivatives with Cytotoxic Activity from Penicillium roqueforti. J Org Chem 2024; 89:1209-1219. [PMID: 38192075 DOI: 10.1021/acs.joc.3c02360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Guided by the Global Natural Products Social (GNPS) molecular networking strategy, five undescribed eremophilane-type sesquiterpenoid derivatives (1-5) were isolated and identified from fungus Penicillium roqueforti, which was separated from the root soil of plant Hypericum beanii collected in Shennongjia Forestry District, Hubei Province. Dipeniroqueforins A-B (1-2), representing a lactam-type sesquiterpenoid skeleton with a highly symmetrical and homodimeric 5/6/6-6/6/5 hexacyclic system, are reported within the eremophilane-type family for the first time. Peniroqueforin D (5) represents the first example of a 1,2-seco eremophilane-type sesquiterpenoid derivative featuring an undescribed 7/6-fused ring system. The structures of these compounds were elucidated by various spectroscopic analyses, DP4+ probability analyses, ECD calculations, and single-crystal X-ray diffraction experiments. Furthermore, these isolates were evaluated for cytotoxicity, and the result uncovered that compound 1 displayed broad-spectrum activity. Further mechanistic study revealed that compound 1 could significantly upregulate the mRNA expression of genes related to the oxidative induction, leading to the abnormal ROS levels in tumor cells and ultimately causing tumor cell apoptosis.
Collapse
Affiliation(s)
- Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yaxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Rui Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Zhihong Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jun Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| |
Collapse
|
4
|
Li F, Gu S, Zhang S, Mo S, Guo J, Hu Z, Zhang Y. Three new amide derivatives from the fungus Alternaria brassicicola. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:28. [PMID: 37695377 PMCID: PMC10495297 DOI: 10.1007/s13659-023-00391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Three new amide derivatives (alteralkaloids A-C, 1-3) and three known alkaloids (4-6) were afforded after phytochemical investigation of fungus Alternaria brassicicola. The structures of these compounds were confirmed by NMR spectroscopic and HRESIMS data. Furthermore, the absolute configuration of 1 was determined using the single-crystal X-ray diffraction analysis. Compounds 1-3 belong to a class of amide derivatives that have not been found in nature before, sharing the same characteristic signals of the butyl moiety and amide group. These isolated compounds mentioned above were tested for the cytotoxic activity.
Collapse
Affiliation(s)
- Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Saisai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jieru Guo
- Department of Pharmacy, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Gao W, Li F, Lin S, Yang B, Wang J, Cao J, Hu Z, Zhang Y. Two new lanostane-type triterpenoids from the fungus Periconia sp. TJ403-rc01. Nat Prod Res 2023; 37:1154-1160. [PMID: 34726089 DOI: 10.1080/14786419.2021.1998046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The endophytic fungus Periconia sp. TJ403-rc01 (Dematiaceae) isolated from the leaves of Rosa chinensis Jacq. (Rosaceae) was cultivated on rice medium and chemically investigated, affording two new lanostane-type triterpenoids, namely pericinones A and B (1 and 2). Their structures were determined mainly by 1 D and 2 D NMR and HRESIMS data. Notably, it is the first report of lanostane-type triterpenoids from species of Periconia. Compounds 1 and 2 showed moderate anti-inflammatory activity against the NO production with IC50 values of 24.12 ± 0.73 and 11.38 ± 1.56 μM, respectively.
Collapse
Affiliation(s)
- Weixi Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Zhao S, Li J, Liu J, Xiao S, Yang S, Mei J, Ren M, Wu S, Zhang H, Yang X. Secondary metabolites of Alternaria: A comprehensive review of chemical diversity and pharmacological properties. Front Microbiol 2023; 13:1085666. [PMID: 36687635 PMCID: PMC9852848 DOI: 10.3389/fmicb.2022.1085666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Fungi are considered to be one of the wealthiest sources of bio-metabolites that can be employed for yielding novel biomedical agents. Alternaria, including parasitic, saprophytic, and endophytic species, is a kind of dark fungi that can produce a broad array of secondary metabolites (SMs) widely distributed in many ecosystems. These are categorized into polyketides, nitrogen-containing compounds, quinones, terpenes, and others based on the unique structural features of the metabolites. New natural products derived from Alternaria exhibit excellent bioactivities characterized by antibacterial, antitumor, antioxidative, phytotoxic, and enzyme inhibitory properties. Thus, the bio-metabolites of Alternaria species are significantly meaningful for pharmaceutical, industrial, biotechnological, and medicinal applications. To update the catalog of secondary metabolites synthesized by Alternaria fungi, 216 newly described metabolites isolated from Alternaria fungi were summarized with their diverse chemical structures, pharmacological activity, and possible biosynthetic pathway. In addition, possible insights, avenues, and challenges for future research and development of Alternaria are discussed.
Collapse
Affiliation(s)
- Shiqin Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shaoyujia Xiao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sumei Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jiahui Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mengyao Ren
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shuzhe Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hongyuan Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiliang Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Department of Pharmacy, Institute of Infection, Immunology and Tumor Microenvironments, Institute of Pharmaceutical Process, Medical College, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Xiliang Yang
| |
Collapse
|
7
|
Xia DD, Duan HJ, Xie F, Xie TP, Zhang Y, Sun Y, Lu JM, Gao YH, Zhou H, Ding ZT. Altereporenes A-E, five epoxy octa-hydronaphthalene polyketides produced by an endophytic fungus Alternaria sp. YUD20002. RSC Adv 2022; 12:22295-22301. [PMID: 36043060 PMCID: PMC9364171 DOI: 10.1039/d2ra03917f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Five previously undescribed epoxy octa-hydronaphthalene polyketides, altereporenes A-E (1-5) were isolated from rice culture of the endophytic fungus Alternaria sp. YUD20002 derived from the tubers of Solanum tuberosum. Their structures were determined on the basis of comprehensive spectroscopic analyses, while the absolute configurations were elucidated by the comparison of experimental and calculated specific rotations. Meanwhile, the antimicrobial, cytotoxic, anti-inflammatory and acetylcholinesterase inhibitory activities of compounds 1-5 were also investigated.
Collapse
Affiliation(s)
- Dan-Dan Xia
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Hao-Jie Duan
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Fei Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Tian-Peng Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Yan Zhang
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Yue Sun
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Jian-Mei Lu
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Yu-Hong Gao
- The First People's Hospital of Yunnan Province Kunming 650034 China
| | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Zhong-Tao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China .,College of Pharmacy, Dali University Dali 671000 China
| |
Collapse
|
8
|
Yang BY, Sun WG, Liu JJ, Wang JP, Hu ZX, Zhang YH. A new pair of cytotoxic enantiomeric isoprenylated chromone derivatives from Pestalotiopsis sp. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:528-534. [PMID: 34236260 DOI: 10.1080/10286020.2021.1946042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
A new pair of enantiomeric isoprenylated chromone derivatives, (±)-pestaloficiol X [(±)-1], along with a known compound pestaloficiol J (2), were isolated from the plant endophytic fungus Pestalotiopsis sp. The racemic mixture 1 was separated through chiral HPLC. The structures of new compounds (±)-1 were elucidated on the basis of extensive spectroscopic data and their absolute configurations were further configured through computational analysis of their electronic circular dichroism (ECD) spectra. Compound (+)-1 showed significant inhibitory potency against HL-60 and HEP-3B cell lines, with IC50 values of 1.35 ± 0.15 and 3.70 ± 0.33 μM, respectively, while compound (-)-1 showed significant inhibitory potency against HL-60 and HEP-3B cell lines, with IC50 values of 2.39 ± 0.26 and 2.99 ± 0.35 μM, respectively.
Collapse
Affiliation(s)
- Bei-Ye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Guang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Jun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian-Ping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng-Xi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong-Hui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Zhou P, Zhang X, Dai C, Yan S, Wei M, Feng W, Li Q, Liu J, Zhu H, Hu Z, Chen C, Zhang Y. Talaromynoids A-E: Five New Fusicoccane Diterpenoids from the Endophytic Fungus Talaromyces sp. DC-26. J Org Chem 2022; 87:7333-7341. [PMID: 35588185 DOI: 10.1021/acs.joc.2c00528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Talaromynoids A-E (1-5), five new fusicoccane diterpenoids, were obtained from the endophytic fungus Talaromyces sp. DC-26, which was isolated from a wild leech. Talaromynoid A (1) represents the first fusicoccane diterpenoid bearing an unexpected 5-7-5 tricyclic ring system, which is possibly derived from normal 5-8-5 ones by ring contraction. Talaromynoid E (5) is characterized by an unusual oxygen bridge between C-1 and C-8 that establishes the eight-membered ring B to be a 9-oxo-bicyclo[3.3.1]nonane. Structures of 1-5 with absolute configurations were determined by extensive NMR spectral analyses, electronic circular dichroism (ECD) calculations, X-ray diffraction analyses, and acid hydrolysis.
Collapse
Affiliation(s)
- Peng Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,Journal Editorial Department, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xiaotian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chong Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shan Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wenya Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
10
|
Potential of Diterpenes as Antidiabetic Agents: Evidence from Clinical and Pre-Clinical Studies. Pharmacol Res 2022; 179:106158. [PMID: 35272043 DOI: 10.1016/j.phrs.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used assays for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. Our data revealed that diterpenes hold promising antidiabetic potential. Stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane class have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.
Collapse
|
11
|
Lin S, Huang J, Zeng H, Tong Q, Zhang X, Yang B, Ye Y, Wang J, Hu Z, Zhang Y. Distachydrimanes A–F, phenylspirodrimane dimers and hybrids with cytotoxic activity from the coral-derived fungus Stachybotrys chartarum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Zhang FL, Feng T. Diterpenes Specially Produced by Fungi: Structures, Biological Activities, and Biosynthesis (2010–2020). J Fungi (Basel) 2022; 8:jof8030244. [PMID: 35330246 PMCID: PMC8951520 DOI: 10.3390/jof8030244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Fungi have traditionally been a very rewarding source of biologically active natural products, while diterpenoids from fungi, such as the cyathane-type diterpenoids from Cyathus and Hericium sp., the fusicoccane-type diterpenoids from Fusicoccum and Alternaria sp., the guanacastane-type diterpenoids from Coprinus and Cercospora sp., and the harziene-type diterpenoids from Trichoderma sp., often represent unique carbon skeletons as well as diverse biological functions. The abundances of novel skeletons, biological activities, and biosynthetic pathways present new opportunities for drug discovery, genome mining, and enzymology. In addition, diterpenoids peculiar to fungi also reveal the possibility of differing biological evolution, although they have similar biosynthetic pathways. In this review, we provide an overview about the structures, biological activities, evolution, organic synthesis, and biosynthesis of diterpenoids that have been specially produced by fungi from 2010 to 2020. We hope this review provides timely illumination and beneficial guidance for future research works of scholars who are interested in this area.
Collapse
|
13
|
Qiao Y, Tan X, Xu Q, Zhang Z, Xu Q, Tao L, Liu J, Zhu H, Chen C, Ye Y, Lu Y, Chen G, Qi C, Zhang Y. Asperosin A, a [4 + 2] Diels–Alder cycloaddition polyketide dimer from Aspergillus rugulosa with immunosuppressive activity. Org Chem Front 2022. [DOI: 10.1039/d1qo01767e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel homologous polyketide dimer, asperosin A (1), constructed with a unique hetero-bicycle 6/5 core skeleton featuring four continuous quaternary carbons, was isolated from a solid culture of the fungus Aspergillus rugulosa.
Collapse
Affiliation(s)
- Yuben Qiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaosheng Tan
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Qianqian Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qiaoxin Xu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Li Tao
- Ezhou Central Hospital, Ezhou 436000, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Lu
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, People's Republic of China
| | - Gang Chen
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
14
|
Yang B, Qi C, Yao Z, Lin S, Li F, Sun W, Hu Z, Zhang Y. Hybeanones A and B, Two Highly Modified Polycyclic Polyprenylated Acylphloroglucinols from
Hypericum beanii. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Zeyu Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
15
|
Li F, Ye Z, Huang Z, Chen X, Sun W, Gao W, Zhang S, Cao F, Wang J, Hu Z, Zhang Y. New α-pyrone derivatives with herbicidal activity from the endophytic fungus Alternaria brassicicola. Bioorg Chem 2021; 117:105452. [PMID: 34742026 DOI: 10.1016/j.bioorg.2021.105452] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
Three pairs of undescribed enantiomeric α-pyrone derivatives (1a/1b-3a/3b) and six undescribed congeners (4-9), were obtained from the fungus Alternaria brassicicola that was isolated from the fresh leaves of Siegesbeckia pubescens Makino (Compositae). The structures of these new compounds were characterized by extensive NMR spectroscopic and HRESIMS data, and their absolute configurations were further elucidated by a modified Mosher's method, chemical conversion, single-crystal X-ray diffraction analysis, and ECD calculations. This is the first report of three pairs of enantiomeric α-pyrone derivatives from the fungus A. brassicicola, and these enantiomers were successfully acquired from scalemic mixtures via chiral HPLC. Compounds 1a/1b-3a/3b and 4-9 were evaluated for the herbicidal activity against Echinochloa crusgalli, Setaria viridis, Portulaca oleracea, and Taraxacum mongolicum. At a concentration of 100 μg/mL, compounds 1a and 1b could significantly inhibit the germination of monocotyledon weed seeds (E. crusgalli and S. viridis) with inhibitory ratios ranging from 68.6 ± 6.4% to 84.2 ± 5.1%, which was equivalent to that of the positive control (glyphosate). The potential structure-herbicidal activity relationship of these compounds was also discussed. To a certain extent, the results of this study will attract great interest for the potential practical application of promising fungal metabolites, α-pyrone derivatives, as ecofriendly herbicides.
Collapse
Affiliation(s)
- Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zi Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhangyan Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Weixi Gao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
16
|
Zhao S, Wang B, Tian K, Ji W, Zhang T, Ping C, Yan W, Ye Y. Novel metabolites from the Cercis chinensis derived endophytic fungus Alternaria alternata ZHJG5 and their antibacterial activities. PEST MANAGEMENT SCIENCE 2021; 77:2264-2271. [PMID: 33423351 DOI: 10.1002/ps.6251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Phytopathogenic bacteria, such as Xanthomonas oryzae pv. oryzae (Xoo) and Ralstonia solanacearum (Rs), seriously threaten crop production and are the cause of enormous yield losses. Endophytic fungi are abundant sources of bioactive metabolites that may be potential candidates in the development of new agrochemicals. This work emphasizes the discovery of bioactive polyketides from endophytic Alternaria alternata ZHJG5 and reports their structural elucidation and antibacterial activities in detail. RESULTS Five novel polyketide derivatives, isotalaroflavone (2), (+/-)-5'-dehydroxytalaroflavone (3a/3b), (+)-talaroflavone (4b), and bialternacin G (7), along with five known compounds (1, 4a, 5, 6, and 8), were obtained from the Cercis chinensis-derived fungus A. alternata ZHJG5. The compounds' structures were characterized using spectroscopic methods and X-ray diffraction. Chiral high-performance liquid chromatography was used to separate the racemates 3 and 4, whose absolute configurations were unambiguously confirmed by comparing their experimental and calculated electron circular dichroism data. All isolated compounds were tested for antibacterial activity against the phytopathogenic bacteria Xoo, Xanthomonas oryzae pv. oryzicola (Xoc) and Rs. Compounds 1, 2 and 8 showed pronounced antibacterial activity against all tested bacteria, with minimal inhibitory concentrations ranging from 0.5 to 64 μg/ml. In addition, compound 1 showed a potent protective effect against rice bacterial leaf blight caused by Xoo with a protective efficacy of 75.1% at a concentration of 200 μg/ml. CONCLUSION These findings highlight the practical potential of antibacterial compounds as candidates for the discovery of novel bactericides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Biao Wang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Tianyi Zhang
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Chuan Ping
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, People's Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Hu Z, Ye Y, Zhang Y. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons. Nat Prod Rep 2021; 38:1775-1793. [PMID: 33650608 DOI: 10.1039/d0np00069h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to July 2020Fungal metabolites with diverse and novel scaffolds can be assembled from well-known biosynthetic precursors through various mechanisms. Recent examples of novel alkaloids (e.g., cytochalasans and diketopiperazine derivatives), terpenes (e.g., sesterterpenes and diterpenes) and polyketides produced by fungi are presented through case studies. We show that large-scale culture is a complementary and practical method for genome mining and OSMAC approaches to discover natural products of unprecedented skeletal classes from fungi. We also summarize the discovery strategies and challenges for characterizing these compounds.
Collapse
Affiliation(s)
- Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
18
|
Zhao S, Tian K, Li Y, Ji W, Liu F, Khan B, Yan W, Ye Y. Enantiomeric Dibenzo-α-Pyrone Derivatives from Alternaria alternata ZHJG5 and Their Potential as Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15115-15122. [PMID: 33289556 DOI: 10.1021/acs.jafc.0c04106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three pairs of enantiomeric dibenzo-α-pyrone derivatives (1-3) including two pairs of new racemates (±)-alternaone A (1) and (±)-alternaone B (2) and one new enantiomer (-)-alternatiol (3), together with five known compounds (4-8) were isolated from the fungus Alternaria alternata ZHJG5. Their structures were confirmed by spectroscopic data and single-crystal X-ray diffraction analysis. All enantiomers were separated via chiral high-performance liquid chromatography, with their configurations determined by electronic circular dichroism calculation. Biogenetically, a key epoxy-rearrangement step was proposed for the formation of skeletons in 1-3; (+) 1, (-)-1, and 5 presented moderate antibacterial inhibition on phytopathogenic bacteria Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. In the antifungal test, compounds 7 and 8 showed a moderate protective effect against Botrytis cinerea in vivo.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Kailin Tian
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Yu Li
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wenxia Ji
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Fang Liu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yonghao Ye
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P. R. China
| |
Collapse
|
19
|
Liu M, Zhang X, Shen L, Sun W, Lin S, Liu J, Cao F, Qi C, Wang J, Hu Z, Zhang Y. Bioactive Polyketide-Terpenoid Hybrids from a Soil-Derived Fungus Bipolaris zeicola. J Org Chem 2020; 86:10962-10974. [DOI: 10.1021/acs.joc.0c02237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, Hebei Province, People’s Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People’s Republic of China
| |
Collapse
|
20
|
Lin S, Zhang X, Shen L, Mo S, Liu J, Wang J, Hu Z, Zhang Y. A new abietane-type diterpenoid and a new long-chain alkenone from fungus Daldinia sp. TJ403-LS1. Nat Prod Res 2020; 36:531-538. [PMID: 32643425 DOI: 10.1080/14786419.2020.1789638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new abietane-type diterpenoid, dalterpenoid A (1), a new long-chain alkenone derivative, (3E,5E,10E)-8-hydroxytrideca-3,5,10,12-tetraen-2-one (2), together with six known compounds (3-8), namely epi-guaidiol A (3), xylaranol A (4), daldinone C (5), trans-3,4-dihydroxy-3,4-dihydro-anofinic acid (6), (R)-6-hydroxymellein (7), helicascolide A (8), were obtained from fungus Daldinia sp. TJ403-LS1, which was originally isolated from roots of the medicinally valuable plant Anoectochilus roxburghii. The structures of compounds 1 and 2 were established based on widespread spectroscopic methods, mainly including 1D & 2D NMR and HRESIMS analyses, and the absolute configuration of 1 was further confirmed by electronic circular dichroism (ECD) calculation. All new compounds were tested for the in vitro cytotoxicity against five human cancer cell lines.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
21
|
Li F, Lin S, Zhang S, Pan L, Chai C, Su JC, Yang B, Liu J, Wang J, Hu Z, Zhang Y. Modified Fusicoccane-Type Diterpenoids from Alternaria brassicicola. JOURNAL OF NATURAL PRODUCTS 2020; 83:1931-1938. [PMID: 32520548 DOI: 10.1021/acs.jnatprod.0c00165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven new modified fusicoccane-type diterpenoids (1-7), together with two known congeners (8 and 9), were obtained from Alternaria brassicicola. Their structures were elucidated from a combination of NMR and HRESIMS data and 13C NMR calculation as well as DP4+ probability analyses, and the absolute configurations of 1-5 were determined by ECD calculation and single-crystal X-ray diffraction (Cu Kα). Compounds 1-3 belong to a rare class of 16-nor-dicyclopenta[a,d]cyclooctane diterpenoids, and compounds 2 and 4 represent the first examples of fusicoccane-type diterpenoids featuring two previously undescribed tetracyclic 5/6/6/5 ring systems, while compound 5 features a previously undescribed tetracyclic 5/8/5/3 ring system. Compound 7 was moderately anti-inflammatory, and compounds 2, 3, 5, and 7 were weakly cytotoxic.
Collapse
Affiliation(s)
- Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Lifen Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Chenwei Chai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jun-Cheng Su
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong Province, People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| |
Collapse
|
22
|
Li F, Pan L, Lin S, Zhang S, Li H, Yang B, Liu J, Wang J, Hu Z, Zhang Y. Fusicoccane-derived diterpenoids with bridgehead double-bond-containing tricyclo[9.2.1.0 3,7]tetradecane ring systems from Alternaria brassicicola. Bioorg Chem 2020; 100:103887. [PMID: 32371250 DOI: 10.1016/j.bioorg.2020.103887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
Fusicoccane-derived diterpenoids bearing a unique bridgehead double-bond-containing tricyclo[9.2.1.03,7]tetradecane (5-9-5 ring system) core skeleton represent a rarely reported class of rearranged terpenoids, which traced back to fusicoccanes with a classical dicyclopenta[a,d]cyclooctane (5-8-5 ring system) core skeleton via a crucial Wagner-Meerwein rearrangement reaction. In this research, alterbrassicenes B-D (1-3), three new rearranged fusicoccane diterpenoids bearing a rare bridgehead double-bond-containing tricyclo[9.2.1.03,7]tetradecane core skeleton, together with two known congeners, brassicicenes O and K (4 and 5), were isolated from the modified cultures of fungus Alternaria brassicicola. Their structures were elucidated by comprehensive analyses of the NMR and HRESIMS data, and the absolute configurations of 1 and 4 were further confirmed via a combination of 13C NMR and ECD calculations and single-crystal X-ray diffraction analysis (Cu Kα). Interestingly, alterbrassicene B (1) represented the second case of bridgehead C-10-C-11 double-bond-containing natural products with a bicyclo[6.2.1]undecane core skeleton, and also featured an undescribed oxygen bridge between C-6 and C-14 to construct an unprecedentedly caged tetracyclic system. Alterbrassicenes B-D showed moderate cytotoxic activity against certain human tumor cell lines with IC50 values in the range of 15.87-36.85 μM.
Collapse
Affiliation(s)
- Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lifen Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
23
|
Qin FY, Zhang HX, Di QQ, Wang Y, Yan YM, Chen WL, Cheng YX. Ganoderma cochlear Metabolites as Probes to Identify a COX-2 Active Site and as in Vitro and in Vivo Anti-Inflammatory Agents. Org Lett 2020; 22:2574-2578. [PMID: 32167308 DOI: 10.1021/acs.orglett.0c00452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(±)-Dispirocochlearoids A-C (1-3), meroterpenoids with a 6/6/5/6/6/6 ring system, were isolated from Ganoderma cochlear. 1-3 are selective COX-2 inhibitors with an IC50 value of (-)-2 at 386 nM. Site-directed mutagenesis identified His351 as a COX-2 active site. In vivo anti-inflammatory activities of (-)-2 were performed against acute lung injury in mice.
Collapse
Affiliation(s)
- Fu-Ying Qin
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hao-Xing Zhang
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qian-Qian Di
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Yong-Ming Yan
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei-Lin Chen
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
24
|
Gao W, Chai C, Li XN, Sun W, Li F, Chen C, Wang J, Zhu H, Wang Y, Hu Z, Zhang Y. Two anti-inflammatory chlorinated azaphilones from Chaetomium globosum TW1-1 cultured with 1-methyl-l-tryptophan and structure revision of chaephilone C. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Lin S, Yu H, Yang B, Li F, Chen X, Li H, Zhang S, Wang J, Hu Y, Hu Z, Zhang Y. Reisolation and Configurational Reinvestigation of Cottoquinazolines E-G from an Arthropod-Derived Strain of the Fungus Neosartorya fischeri. JOURNAL OF NATURAL PRODUCTS 2020; 83:169-173. [PMID: 31920082 DOI: 10.1021/acs.jnatprod.9b01000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reported fumiquinazoline-related alkaloids cottoquinazolines E-G (1-3) were reisolated from solid cultures of the fungus Neosartorya fischeri, which was isolated from the medicinal arthropod Cryptotympana atrata. The unresolved issues regarding the absolute configurations (for cottoquinazolines E and F) prompted a reinvestigation of the configurations for all three compounds, as enabled by extensive spectroscopic methods, comparisons of experimental electronic circular dichroism data, and X-ray crystallography. In addition, cottoquinazoline F (2) showed significant antibacterial activity against ESBL-producing Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecalis with MIC values of 8, 32, 32, and 16 μg/mL, respectively.
Collapse
Affiliation(s)
- Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Huimin Yu
- Department of Periodontics , Stomatological Hospital of Southern Medical University, Guangdong Provincial Stomatological Hospital , Guangzhou 510280 , People's Republic of China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
26
|
New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403-2. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Zhang M, Yan S, Liang Y, Zheng M, Wu Z, Zang Y, Yu M, Sun W, Liu J, Ye Y, Wang J, Chen C, Zhu H, Zhang Y. Talaronoids A–D: four fusicoccane diterpenoids with an unprecedented tricyclic 5/8/6 ring system from the fungus Talaromyces stipitatus. Org Chem Front 2020. [DOI: 10.1039/d0qo00960a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Talaronoids A–D (1–4), four fusicoccane diterpenoids with an unexpected tricyclic 5/8/6 carbon skeleton from Talaromyces stipitatus, represent the first examples of natural products with a benzo[a]cyclopenta[d]cyclooctane skeleton.
Collapse
|
28
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2018. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1129-1150. [PMID: 31736363 DOI: 10.1080/10286020.2019.1684474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The new natural products reported in 2018 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2018 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
29
|
Li F, Tang Y, Sun W, Guan J, Lu Y, Zhang S, Lin S, Wang J, Hu Z, Zhang Y. New cytotoxic tricycloalternarenes from fungus Alternaria brassicicola. Bioorg Chem 2019; 92:103279. [DOI: 10.1016/j.bioorg.2019.103279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
|
30
|
Liu M, Sun W, Shen L, Hao X, Al Anbari WH, Lin S, Li H, Gao W, Wang J, Hu Z, Zhang Y. Bipolaricins A-I, Ophiobolin-Type Tetracyclic Sesterterpenes from a Phytopathogenic Bipolaris sp. Fungus. JOURNAL OF NATURAL PRODUCTS 2019; 82:2897-2906. [PMID: 31573805 DOI: 10.1021/acs.jnatprod.9b00744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A preliminary phytochemical investigation on the EtOAc extracts of the fungus Bipolaris sp. TJ403-B1 resulted in the identification of 12 ophiobolin-type phytotoxins (1-12), including nine new ones, termed bipolaricins A-I (1-9). The structures of 1-9 were elucidated via spectroscopic data (including HRESIMS and 1D and 2D NMR) and single-crystal X-ray diffraction (Cu Kα) analyses. All of the isolated compounds were tested in terms of HMG-CoA reductase inhibitory, anti-inflammatory, and cytotoxic activities. Compound 10 showed HMG-CoA reductase inhibitory activity (IC50 = 8.4 ± 0.4 μM), and 2, 3, and 10-12 showed significant inhibitory potency against lipopolysaccharide (LPS)-induced nitric oxide production, with IC50 values in the range of 5.1 ± 0.3 to 20 ± 1 μM. Further experiments showed that 10 could significantly inhibit the production of IL-1β, RANTES, MIP-1β, and TNF-α as well as enhance the release of IL-13 in macrophages through the inhibition of HO-1 induction as well as the NF-κB pathway. These findings provide a scientific rationale for an anti-inflammatory therapeutic and a template for a new HMG-CoA reductase inhibitor to produce a potential anti-hyperlipidemia agent.
Collapse
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy , Hubei University of Medicine , Shiyan 442000 , People's Republic of China
| | - Weaam Hasan Al Anbari
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Weixi Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
31
|
Gao W, Chai C, He Y, Li F, Hao X, Cao F, Gu L, Liu J, Hu Z, Zhang Y. Periconiastone A, an Antibacterial Ergosterol with a Pentacyclo[8.7.0.01,5.02,14.010,15]heptadecane System from Periconia sp. TJ403-rc01. Org Lett 2019; 21:8469-8472. [DOI: 10.1021/acs.orglett.9b03270] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weixi Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Chenwei Chai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yan He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Xincai Hao
- College of Pharmacy, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, P.R. China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
32
|
Li F, Lin S, Zhang S, Hao X, Li XN, Yang B, Liu J, Wang J, Hu Z, Zhang Y. Alterbrassinoids A–D: Fusicoccane-Derived Diterpenoid Dimers Featuring Different Carbon Skeletons from Alternaria brassicicola. Org Lett 2019; 21:8353-8357. [DOI: 10.1021/acs.orglett.9b03133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Shuang Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xincai Hao
- College of Pharmacy, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Beiye Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
33
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019; 58:12091-12095. [DOI: 10.1002/anie.201905966] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
34
|
Liu M, Sun W, Shen L, He Y, Liu J, Wang J, Hu Z, Zhang Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from
Bipolaris
sp. TJ403‐B1. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yan He
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
35
|
Xu J, Hu YW, Qu W, Chen MH, Zhou LS, Bi QR, Luo JG, Liu WY, Feng F, Zhang J. Cytotoxic and neuroprotective activities of constituents from Alternaria alternate, a fungal endophyte of Psidium littorale. Bioorg Chem 2019; 90:103046. [PMID: 31212182 DOI: 10.1016/j.bioorg.2019.103046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
Abstract
Chemical investigation of the EtOAc extract of the plant-associated fungus Alternaria alternate in rice culture led to the isolation of a novel liphatic polyketone, alternin A (1), a new indole alkaloid (8), and a new sesquiterpene (11), together with 12 known compounds. Their structures were elucidated by the interpretation of extensive spectroscopic data, and the absolute configurations of 1-3 were established using calculations of ECD spectra, NMR data, and optical rotation values. Compound 1 possesses an unprecedented C25 liphatic polyketone skeleton. Compounds 5 and 10 exhibited potential cytotoxic activities against MCF-7 and HepG cells, and compounds 2, 7, and 9 exhibited potential neuroprotective activities in glutamate induced-PC12 injured cells.
Collapse
Affiliation(s)
- Jian Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yun-Wei Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ming-Hua Chen
- NHC Key Laboratory for Microbial Drug Bioengeering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Liang-Sheng Zhou
- College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Qi-Rui Bi
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jian-Guang Luo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Yuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Jiangsu Food & Pharmaceutical Science College, Huaian 223003, People's Republic of China.
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
36
|
Liu M, He Y, Shen L, Anbari WHA, Li H, Wang J, Qi C, Hu Z, Zhang Y. Asperteramide A, an Unusual N
-Phenyl-Carbamic Acid Methyl Ester Trimer Isolated from the Coral-Derived Fungus Aspergillus Terreus. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mengting Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Yan He
- Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Weaam Hasan Al Anbari
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan People's Republic of China
| |
Collapse
|