1
|
Liu H, Guo M, Jia M, Zhang J, Xu X. Electrochemical Cyclizative Carboxylation of Alkene-Tethered Aryl Isocyanides with Carbon Dioxide. Org Lett 2025; 27:778-782. [PMID: 39804334 DOI: 10.1021/acs.orglett.4c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Herein, we present an unprecedented electrochemical reductive cyclizative carboxylation of o-vinylphenyl isocyanides with carbon dioxide achieved without the use of metal catalysts. This protocol demonstrates a broad substrate scope and good functional group tolerance, facilitating the rapid assembly of 2-oxoindolin-3-acetic acids in good to high yields with excellent regioselectivity. Furthermore, these structural motifs may have potential applications in formal synthesis of bioactive natural products.
Collapse
Affiliation(s)
- Haitao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Meng Guo
- School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianwei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
2
|
Mu S, Xuan Q, Luo Y, Guo Y, Xu J, Song Q. Synthesis of Polysubstituted Benzo[ b][1,5]naphthyridine via Mn(III)-Mediated Domino Cascade Reactions of Cyclopropanols and 2-(2-Isocyanophenyl)acetonitriles. Org Lett 2025; 27:153-158. [PMID: 39745004 DOI: 10.1021/acs.orglett.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Domino cascade reactions, which can construct multiple bonds in one pot, are efficient methods to synthesize N-heterocycles and other useful skeletons. Herein, we report an expedient synthesis of polysubstituted benzo[b][1,5]naphthyridine via Mn(III)-mediated C-C bond cleavage of cyclopropanols. These reactions were initiated by addition of β-carbonyl radicals, generated from cyclopropyl alcohols in the presence of Mn(III), to 2-(2-isocyanophenyl)acetonitriles to give quinolin-3-amines, which went through intramolecular cyclizations and dehydrogenation to give the final products.
Collapse
Affiliation(s)
- Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Liu Y, Jia M, Wang G, Yang W, Xu X. Silver-catalyzed P-centered anion nucleophilic addition to isocyanide: access to 2-phosphinoyl indoles/indol-3-ols. Chem Commun (Camb) 2024; 60:7196-7199. [PMID: 38904457 DOI: 10.1039/d4cc01984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A silver-catalyzed chemoselective cascade nucleophilic addition of a P-centered anion to isocyanides and cyclization reaction was developed for the efficient and practical synthesis of a wide range of 2-phosphinoyl indole and indol-3-ol derivatives. Unlike the well-documented synthesis of phosphorus-functionalized heterocycles via a P-centered radical, an anionic reactivity profile of phosphine oxides is most likely involved in this domino transformation.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Guodong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Wenhui Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
4
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
5
|
Liu H, Jia M, Sun S, Xu X. Access to 2-thio/selenoquinolines via domino reaction of isocyanides with sulfur and selenium in water. Chem Commun (Camb) 2023; 59:14595-14598. [PMID: 37991823 DOI: 10.1039/d3cc04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A domino reaction of o-alkenylaryl isocyanides with elemental sulfur and selenium in pure water was developed for the efficient and green synthesis of quinoline-2-thione and diquinolyl diselenide derivatives. Mechanistical investigation reveals that intramolecular nucleophilic addition of an alkenyl group to the in situ generated isothio/isoselenocyanate accounts for the formation of a quinoline-ring. Moreover, this transformation is also amendable for the convenient preparation of 2-fluoromethylthio-/seleno-quinolines by a one-pot three-component reaction.
Collapse
Affiliation(s)
- Haitao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua, Sichuan 617000, China.
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Xiao Z, Xu F, Sun J, Yan CG. Selective construction of dispiro[indoline-3,2'-quinoline-3',3''-indoline] and dispiro[indoline-3,2'-pyrrole-3',3''-indoline] via three-component reaction. Beilstein J Org Chem 2023; 19:1234-1242. [PMID: 37674522 PMCID: PMC10478003 DOI: 10.3762/bjoc.19.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
A convenient synthetic procedure for the construction of novel dispirooxindole motifs was successfully developed by base-promoted three-component reaction of ammonium acetate, isatins and in situ-generated 3-isatyl-1,4-dicarbonyl compounds. The piperidine-promoted three-component reaction of ammonium acetate, isatins and the in situ-generated dimedone adducts of 3-ethoxycarbonylmethyleneoxindoles afforded mutlifunctionalized dispiro[indoline-3,2'-quinoline-3',3''-indoline] derivatives in good yields and with high diastereoselectivity. On the other hand, a similar reaction of the dimedone adducts of 3-phenacylideneoxindoles afforded unique dispiro[indoline-3,2'-pyrrole-3',3''-indoline] derivatives with a cyclohexanedione substituent. A plausible reaction mechanism is proposed to explain the formation of the different spirooxindoles.
Collapse
Affiliation(s)
- Ziying Xiao
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Fengshun Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Jiangsu, Yangzhou 225002, China
| |
Collapse
|
7
|
Xiao Y, Peng X, Shen J, Cui L, Lu S, Jia X, Li C, Li J. Cascade reaction of o-enoyl arylisocyanide and o-hydroxy aromatic aldimine: diastereoselective access to a polycyclic spirobenzoxazine chromeno[4,3- b]pyrrole derivative. Chem Commun (Camb) 2022; 58:10528-10531. [PMID: 36043872 DOI: 10.1039/d2cc02454c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of structurally unusual spirobenzoxazine chromeno[4,3-b]pyrrole derivatives have been efficiently constructed in a single operation from readily available starting materials. This domino transformation forms successively three new rings and provides a fast and economic strategy with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Xin Peng
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Jie Shen
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Lei Cui
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Shanya Lu
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Xueshun Jia
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jian Li
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
8
|
Li J, Li D, Wang Z, Zhang H, Lu N, Cui L, Wu N, Li C. Diastereoselective Synthesis of Chromenopyrrole Derivative Enabled by Multicomponent Reaction of Isocyanide, Allenoate, and Phenol. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Ashitha KT, Krishna A, Basavaraja D, Sasidhar BS. Recent Advances in the Transition Metal-Free Synthesis of Heterocycles from α, β-Unsaturated Ketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are an inevitable part of our life. These important classes of molecules have a wide range of applications starting from life-sustaining drugs to agrochemicals. Numerous methods, including metal...
Collapse
|
10
|
Xiao Y, Shen J, Wang L, Lu S, Li J. Diastereoselective Synthesis of
oxa
‐Bridged Tetracyclic Benzooxazines from the Reaction of 2‐Isocyanophenyloxyacrylates and Propargylic Esters. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yao Xiao
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Jie Shen
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Li Wang
- College of Science Hangzhou Normal University, Hangzhou Zhejiang 310036 People's Republic of China
| | - Shanya Lu
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Jian Li
- Department of Chemistry, College of Sciences & Institute for Sustainable Energy Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
11
|
Liu L, Li L, Wang X, Sun R, Zhou MD, Wang H. Mn(III)-Mediated Radical Cyclization of o-Alkenyl Aromatic Isocyanides with Boronic Acids: Access to N-Unprotected 2-Aryl-3-cyanoindoles. Org Lett 2021; 23:5826-5830. [PMID: 34323503 DOI: 10.1021/acs.orglett.1c01979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of N-unprotected 2-aryl-3-cyanoindoles was realized via the Mn(III)-mediated radical cascade cyclization of o-alkenyl aromatic isocyanides with boronic acids. A possible mechanism involving a sequential intermolecular radical addition, intramolecular cyclization, and cleavage of the C-C bond under mild reaction conditions is proposed. Mechanism studies show that H2O or O2 might provide the oxygen source for the elimination of benzaldehyde.
Collapse
Affiliation(s)
- Lu Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xin Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ran Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - He Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
12
|
Dong P, Majeed K, Wang L, Guo Z, Zhou F, Zhang Q. Transition metal-free approach to azafluoranthene scaffolds by aldol condensation/[1+2+3] annulation tandem reaction of isocyanoacetates with 8-(alkynyl)-1-naphthaldehydes. Chem Commun (Camb) 2021; 57:4855-4858. [PMID: 33870390 DOI: 10.1039/d1cc01015h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A transition metal-free aldol condensation/[1+2+3] annulation reaction of isocyanoacetates with 8-(alkynyl)-1-naphthaldehydes has been developed for the general synthesis of azafluoranthenes. This domino reaction enables successive formation of three new bonds and two rings from readily accessible starting materials in a single operation. Furthermore, this methodology can also be utilized to construct chromeno[4,3-c]pyridines and benzo[c][2,6]naphthyridines in moderate yields.
Collapse
Affiliation(s)
- Penghui Dong
- Xi'an Key Laboratory of Functional Organic Porous Materials, Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Dong J, Wang L, Li H, Leng X, Guo X, Hu Z, Xu X. Self-cyclization vs. dimerization of o-alkenyl arylisocyanides: chemodivergent synthesis of quinolines and pyrrolo-fused diindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00132a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Solvent-dependent chemoselective MBH-type self-cyclization and dimerization of o-alkenyl arylisocyanides were developed for the efficient and chemodivergent synthesis of various 3-acylquinoline and pyrrolo-fused diindole frameworks.
Collapse
Affiliation(s)
- Jinhuan Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lei Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Haoyue Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xinrong Leng
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xiaoyu Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhongyan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xianxiu Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
14
|
Sepahvand H, Bazgir A, Shaabani A. Cu-Catalyzed Oxidative-Reaction of Tosylmethylisocyanide and Benzyl Alcohols: Efficient Synthesis of 4-(tert-butylperoxy)-5-aryloxazol-2(3H)-ones and 5-Aryloxazol-2(5H)-ones. Catal Letters 2020. [DOI: 10.1007/s10562-020-03109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Mao S, Wang H, Liu L, Wang X, Zhou M, Li L. Trifluoromethylation/Difluoromethylation‐Initiated Radical Cyclization of
o
‐Alkenyl Aromatic Isocyanides for Direct Construction of 4‐Cyano‐2‐Trifluoromethyl/Difluoromethyl‐Containing Quinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shukuan Mao
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lu Liu
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Xin Wang
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lei Li
- School of Chemistry and Materials ScienceLiaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| |
Collapse
|
16
|
Zhang L, Yang W, Hu Z, Zhang X, Xu X. Tandem Access to Acridones and their Fused Derivatives: [1+2+3] Annulation of Isocyanides with Unsaturated Carbonyls. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ling‐Juan Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material ScienceShanxi Normal University, Linfen Shanxi 041004 People's Republic of China
| | - Wenhui Yang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material ScienceShanxi Normal University, Linfen Shanxi 041004 People's Republic of China
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano ScienceShandong Normal University Jinan 250014 People's Republic of China
| | - Xian‐Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry & Material ScienceShanxi Normal University, Linfen Shanxi 041004 People's Republic of China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano ScienceShandong Normal University Jinan 250014 People's Republic of China
| |
Collapse
|
17
|
Hu Z, Men Y, Xu Z, Wu T, Xu X, Tang B. A catalyst-free aqueous mediated multicomponent reaction of isocyanide: expeditious synthesis of polyfunctionalized cyclo[b]fused mono-, di- and tricarbazoles. Org Chem Front 2020. [DOI: 10.1039/d0qo01095b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new multi-component reaction is developed for the synthesis of cyclo[b]fused mono-, di- and tricarbazoles from o-alkenyl arylisocyanides, aldehydes, and cyclic diketones in ethanol/water (1 : 1) as the solvent system.
Collapse
Affiliation(s)
- Zhongyan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yang Men
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zihao Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Tengteng Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xianxiu Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
18
|
Yang M, Meng XH, Wang Z, Gong Y, Zhao YL. Rhodium/copper-cocatalyzed coupling-cyclization of o-alkenyl arylisocyanides with vinyl azides: one-pot synthesis of α-carbolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00994f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel rhodium/copper-cocatalyzed coupling–cyclization reaction of o-alkenyl arylisocyanides with vinyl azides has been developed. The reaction provides a new route to α-carbolines by the formation of two C–C bonds, one C–N bond and two aromatic rings in a single step.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
19
|
Hu Z, Zhang M, Zhou Q, Xu X, Tang B. Domino synthesis of fully substituted pyridines by silver-catalyzed chemoselective hetero-dimerization of isocyanides. Org Chem Front 2020. [DOI: 10.1039/c9qo01333d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A silver-catalyzed hetero-dimerization of various vinyl isocyanides with isocyanoacetamides has been developed for the efficient and practical synthesis of fully substituted pyridines in a single operation.
Collapse
Affiliation(s)
- Zhongyan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Mingyue Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Qinghua Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Xianxiu Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
| |
Collapse
|
20
|
Xue B, Su S, Cui Y, Fei Y, Jia X, Li J, Fang J. Phosphine-mediated sequential annulations of allenyl ketone and isocyanide: a bicyclization strategy to access a furan-fused eight-membered ring and a spirocycle. Chem Commun (Camb) 2019; 55:12180-12183. [DOI: 10.1039/c9cc06267j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphine-mediated cascade annulations of allenyl ketone and isocyanide have been disclosed. This strategy enables the efficient synthesis of a furan-fused eight-membered ring and a spirocycle.
Collapse
Affiliation(s)
- Bingxiang Xue
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Shikuan Su
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Yongmei Cui
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Youwen Fei
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Xueshun Jia
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Jian Li
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Jianhui Fang
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute for Sustainable Energy
- Shanghai University
- Shanghai 200444
| |
Collapse
|