1
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
2
|
Pingitore V, Pancholi J, Hornsby TW, Warne J, Pryce G, McCormick LJ, Hill J, Bhosale G, Peng J, Newton LS, Towers GJ, Coles SJ, Chan AWE, Duchen MR, Szabadkai G, Baker D, Selwood DL. Delocalized quinolinium-macrocyclic peptides, an atypical chemotype for CNS penetration. SCIENCE ADVANCES 2024; 10:eado3501. [PMID: 38985859 PMCID: PMC11235165 DOI: 10.1126/sciadv.ado3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Macrocyclic drugs can address an increasing range of molecular targets but enabling central nervous system (CNS) access to these drugs has been viewed as an intractable problem. We designed and synthesized a series of quinolinium-modified cyclosporine derivatives targeted to the mitochondrial cyclophilin D protein. Modification of the cation to enable greater delocalization was confirmed by x-ray crystallography of the cations. Critically, greater delocalization improved brain concentrations. Assessment of the compounds in preclinical assays and for pharmacokinetics identified a molecule JP1-138 with at least 20 times the brain levels of a non-delocalized compound or those reported for cyclosporine. Levels were maintained over 24 hours together with low hERG potential. The paradigm outlined here could have widespread utility in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Valeria Pingitore
- Drug Discovery, UCL Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
- Department of Biological and Health Sciences, Universidad Loyola Andalucía, Dos Hermanas, Seville 41704, Spain
| | - Jessica Pancholi
- Drug Discovery, UCL Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Thomas W Hornsby
- Drug Discovery, UCL Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Justin Warne
- Drug Discovery, UCL Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Gareth Pryce
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Laura J McCormick
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton SO17 1BJ, UK
| | - Julia Hill
- Department of Cell and Developmental Biology, UCL Consortium for Mitochondrial Research, London WC1E 6BT, UK
| | - Gauri Bhosale
- Department of Cell and Developmental Biology, UCL Consortium for Mitochondrial Research, London WC1E 6BT, UK
| | - Jing Peng
- Drug Discovery, UCL Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Lydia S Newton
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Simon J Coles
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton SO17 1BJ, UK
| | - Ah Wing Edith Chan
- Drug Discovery, UCL Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, UCL Consortium for Mitochondrial Research, London WC1E 6BT, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, UCL Consortium for Mitochondrial Research, London WC1E 6BT, UK
- Department of Biomedical Sciences, University of Padua, Padua 35131 Italy
| | - David Baker
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - David L Selwood
- Drug Discovery, UCL Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX⋅LiX (X=Cl, Br). Angew Chem Int Ed Engl 2022; 61:e202210491. [PMID: 35943036 PMCID: PMC9826189 DOI: 10.1002/anie.202210491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/11/2023]
Abstract
A new method for regioselective zincations of challenging N-heterocyclic substrates such as pyrimidines and pyridazine was reported using bimetallic bases TMPZnX⋅LiX (TMP=2,2,6,6-tetramethylpiperidyl; X=Cl, Br). Reactions occurred under mild conditions (25-70 °C, using 1.75 equivalents of base without additives), furnishing 2-zincated pyrimidines and 3-zincated pyridazine, which were then trapped with a variety of electrophiles. Contrasting with other s-block metalating systems, which lack selectivity in their reactions even when operating at low temperatures, these mixed Li/Zn bases enabled unprecedented regioselectivities that cannot be replicated by either LiTMP nor Zn(TMP)2 on their own. Spectroscopic and structural interrogations of organometallic intermediates involved in these reactions have shed light on the complex constitution of reaction mixtures and the origins of their special reactivities.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alisa S. Sunagatullina
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Leonie J. Bole
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Pasquale Mastropierro
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Simon Graßl
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Henrik R. Wilke
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Edouard Godineau
- Forschung & Entwicklung SteinSyngenta Crop Protection AGSchaffhauserstrasse 1014332SteinSwitzerland
| | - Eva Hevia
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Paul Knochel
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
4
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX·LiX (X = Cl, Br). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Leonie J. Bole
- Universität Bern: Universitat Bern Department für Chemie und Biochemie SWITZERLAND
| | | | - Simon Graßl
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Henrik R. Wilke
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Edouard Godineau
- Syngenta Crop Protection AG Forschung & Entwicklung Stein SWITZERLAND
| | - Eva Hevia
- Universität Bern: Universitat Bern Chemie und Biochemie SWITZERLAND
| | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
5
|
Heinz B, Djukanovic D, Filipponi P, Martin B, Karaghiosoff K, Knochel P. Regioselective difunctionalization of pyridines via 3,4-pyridynes. Chem Sci 2021; 12:6143-6147. [PMID: 33996011 PMCID: PMC8098683 DOI: 10.1039/d1sc01208h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
A new regioselective 3,4-difunctionalization of 3-chloropyridines via 3,4-pyridyne intermediates is reported. Regioselective lithiation of 3-chloro-2-ethoxypyridine and a related 2-thio-derivative followed by treatment with aryl- and alkylmagnesium halides as well as magnesium thiolates at -78 °C produced 3,4-pyridynes during heating to 75 °C. Regioselective addition of the Grignard moiety in position 4 followed by an electrophilic quench in position 3 led to various 2,3,4-trisubstituted pyridines. This method was adapted into a continuous flow set-up. As an application, we have prepared a key intermediate for (±)-paroxetine.
Collapse
Affiliation(s)
- Benjamin Heinz
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| | - Dimitrije Djukanovic
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| | - Paolo Filipponi
- Novartis Pharma AG, Chemical Development Fabrikstraße 4002 Basel Switzerland
| | - Benjamin Martin
- Novartis Pharma AG, Chemical Development Fabrikstraße 4002 Basel Switzerland
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie Butenandtstraße 5-13 81377 Munich Germany
| |
Collapse
|
6
|
Dong ZB, Chen JQ. Recent Progress in Utilization of Functionalized Organometallic Reagents in Cross Coupling Reactions and Nucleophilic Additions. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractOrganometallic compounds have become increasingly important in organic synthesis because of their high chemoselectivity and excellent reactivity. Recently, a variety of organometallic reagents were found to facilitate transition-metal-catalyzed cross-coupling reactions and nucleophilic addition reactions. Here, we have summarized the latest progress in cross-coupling reactions and in nucleophilic addition reactions with functionalized organometallic reagents present to illustrate their application value. Due to the tremendous contribution made by the Knochel group towards the development of novel organometallic reagents, this review draws extensively from their work in this area in recent years.Introduction1 Transition-Metal-Catalyzed Cross Couplings Involving Organozinc Reagents2 Transition-Metal-Catalyzed Cross Couplings Involving Organomagnesium Reagents3 Transition-Metal-Free Cross Couplings Involving Zn and Mg Organometallic Reagents4 Nucleophilic Additions Involving Zn and Mg Organometallic Reagents5 Cross-Coupling Reactions or Nucleophilic Additions Involving Mn, Al-, La-, Li-, Sm- and In-Organometallics6 Conclusion
Collapse
Affiliation(s)
- Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology
| | - Jin-Quan Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology
| |
Collapse
|
7
|
Berton M, Sheehan K, Adamo A, McQuade DT. Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel-Hauser amides, and magnesium alkoxides. Beilstein J Org Chem 2020; 16:1343-1356. [PMID: 32595782 PMCID: PMC7308606 DOI: 10.3762/bjoc.16.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Magnesium organometallic reagents occupy a central position in organic synthesis. The freshness of these compounds is the key for achieving a high conversion and reproducible results. Common methods for the synthesis of Grignard reagents from metallic magnesium present safety issues and exhibit a batch-to-batch variability. Tubular reactors of solid reagents combined with solution-phase reagents enable the continuous-flow preparation of organomagnesium reagents. The use of stratified packed-bed columns of magnesium metal and lithium chloride for the synthesis of highly concentrated turbo Grignards is reported. A low-cost pod-style synthesizer prototype, which incorporates single-use prepacked perfluorinated cartridges and bags of reagents for the automated on-demand lab-scale synthesis of carbon, nitrogen, and oxygen turbo magnesium bases is presented. This concept will provide access to fresh organomagnesium reagents on a discovery scale and will do so independent from the operator’s experience in flow and/or organometallic chemistry.
Collapse
Affiliation(s)
- Mateo Berton
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Biotech Eight, 737 N. 5th St., Box 980100, Richmond, VA 23219, USA
| | - Kevin Sheehan
- Zaiput Flow Technologies, 300 2nd Avenue, Waltham, MA 02451, USA
| | - Andrea Adamo
- Zaiput Flow Technologies, 300 2nd Avenue, Waltham, MA 02451, USA
| | - D Tyler McQuade
- Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Biotech Eight, 737 N. 5th St., Box 980100, Richmond, VA 23219, USA
| |
Collapse
|
8
|
Alessi M, Patel JJ, Zumbansen K, Snieckus V. The Tetraethylphosphorodiamidate (OP(O)(NEt2)2) Directed Metalation Group (DMG). Directed ortho and Lateral Metalation and the Phospha Anionic Fries Rearrangement. Org Lett 2020; 22:2147-2151. [DOI: 10.1021/acs.orglett.0c00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manlio Alessi
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston K7L 3N6, ON Canada
| | - Jignesh J. Patel
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston K7L 3N6, ON Canada
| | - Kristina Zumbansen
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston K7L 3N6, ON Canada
| | - Victor Snieckus
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston K7L 3N6, ON Canada
| |
Collapse
|
9
|
Balkenhohl M, Jangra H, Lenz T, Ebeling M, Zipse H, Karaghiosoff K, Knochel P. Lewis‐Säure‐dirigierte regioselektive Metallierungen an Pyridazin. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Moritz Balkenhohl
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Harish Jangra
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Tobias Lenz
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Marian Ebeling
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
10
|
Balkenhohl M, Jangra H, Lenz T, Ebeling M, Zipse H, Karaghiosoff K, Knochel P. Lewis Acid Directed Regioselective Metalations of Pyridazine. Angew Chem Int Ed Engl 2019; 58:9244-9247. [DOI: 10.1002/anie.201903839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Moritz Balkenhohl
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Harish Jangra
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Tobias Lenz
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Marian Ebeling
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstrasse 5–13, Haus F 81377 München Germany
| |
Collapse
|
11
|
Göbel D, Clamor N, Lork E, Nachtsheim BJ. Aerobic C(sp2)–H Hydroxylations of 2-Aryloxazolines: Fast Access to Excited-State Intramolecular Proton Transfer (ESIPT)-Based Luminophores. Org Lett 2019; 21:5373-5377. [DOI: 10.1021/acs.orglett.9b01350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dominik Göbel
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Nils Clamor
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Enno Lork
- Institute for Inorganic and Crystallographic Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Boris J. Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
12
|
Balkenhohl M, Valsamidou V, Knochel P. Amination of 2‐Pyridinesulfonic and 8‐Quinolinesulfonic Acids with Magnesium Amides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Moritz Balkenhohl
- Department Chemie Ludwig‐Maximilians‐Universität München Butenandtstrasse 5‐13, Haus F 81377 München Germany
| | - Vasiliki Valsamidou
- Department Chemie Ludwig‐Maximilians‐Universität München Butenandtstrasse 5‐13, Haus F 81377 München Germany
| | - Paul Knochel
- Department Chemie Ludwig‐Maximilians‐Universität München Butenandtstrasse 5‐13, Haus F 81377 München Germany
| |
Collapse
|