1
|
Yang M, Li Y, Kong L, Huang S, He L, Liu P, Mo S, Lu X, Lin X, Xiao Y, Shi D, Huang X, Chen B, Chen X, Ouyang Y, Li J, Lin C, Song L. Inhibition of DPAGT1 suppresses HER2 shedding and trastuzumab resistance in human breast cancer. J Clin Invest 2023; 133:e164428. [PMID: 37463446 DOI: 10.1172/jci164428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/23/2023] [Indexed: 07/20/2023] Open
Abstract
Human epidermal growth factor receptor 2-targeted (HER2-targeted) therapy is the mainstay of treatment for HER2+ breast cancer. However, the proteolytic cleavage of HER2, or HER2 shedding, induces the release of the target epitope at the ectodomain (ECD) and the generation of a constitutively active intracellular fragment (p95HER2), impeding the effectiveness of anti-HER2 therapy. Therefore, identifying key regulators in HER2 shedding might provide promising targetable vulnerabilities against resistance. In the current study, we found that upregulation of dolichyl-phosphate N-acetylglucosaminyltransferase (DPAGT1) sustained high-level HER2 shedding to confer trastuzumab resistance, which was associated with poor clinical outcomes. Upon trastuzumab treatment, the membrane-bound DPAGT1 protein was endocytosed via the caveolae pathway and retrogradely transported to the ER, where DPAGT1 induced N-glycosylation of the sheddase - ADAM metallopeptidase domain 10 (ADAM10) - to ensure its expression, maturation, and activation. N-glycosylation of ADAM10 at N267 protected itself from ER-associated protein degradation and was essential for DPAGT1-mediated HER2 shedding and trastuzumab resistance. Importantly, inhibition of DPAGT1 with tunicamycin acted synergistically with trastuzumab treatment to block HER2 signaling and reverse resistance. These findings reveal a prominent mechanism for HER2 shedding and suggest that targeting DPAGT1 might be a promising strategy against trastuzumab-resistant breast cancer.
Collapse
Affiliation(s)
- Muwen Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Lingzhi Kong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Mo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xiuqing Lu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Xi Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine and
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Mitachi K, Mingle D, Effah W, Sánchez‐Ruiz A, Hevener KE, Narayanan R, Clemons WM, Sarabia F, Kurosu M. Concise Synthesis of Tunicamycin V and Discovery of a Cytostatic DPAGT1 Inhibitor. Angew Chem Int Ed Engl 2022; 61:e202203225. [PMID: 35594368 PMCID: PMC9329268 DOI: 10.1002/anie.202203225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A short total synthesis of tunicamycin V (1), a non-selective phosphotransferase inhibitor, is achieved via a Büchner-Curtius-Schlotterbeck type reaction. Tunicamycin V can be synthesized in 15 chemical steps from D-galactal with 21 % overall yield. The established synthetic scheme is operationally very simple and flexible to introduce building blocks of interest. The inhibitory activity of one of the designed analogues 28 against human dolichyl-phosphate N-acetylglucosaminephosphotransferase 1 (DPAGT1) is 12.5 times greater than 1. While tunicamycins are cytotoxic molecules with a low selectivity, the novel analogue 28 displays selective cytostatic activity against breast cancer cell lines including a triple-negative breast cancer.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - David Mingle
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - Wendy Effah
- Department of Medicine University of Tennessee Health Science Center 19 S. Manassas, Room 120 Memphis TN 38103 USA
| | - Antonio Sánchez‐Ruiz
- Faculty of Pharmacy Campus de Albacete Universidad de Castilla-La Mancha Avda. Dr. José María Sánchez Ibáñez S/N 02008 Albacete Spain
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - Ramesh Narayanan
- Department of Medicine University of Tennessee Health Science Center 19 S. Manassas, Room 120 Memphis TN 38103 USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Francisco Sarabia
- Department of Organic Chemistry Faculty of Sciences Universidad de Málaga, Campus de Teatinos 29071 Málaga Spain
| | - Michio Kurosu
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| |
Collapse
|
3
|
Mitachi K, Mingle D, Effah W, Sánchez-Ruiz A, Hevener KE, Narayanan R, Clemons WM, Sarabia F, Kurosu M. Concise Synthesis of Tunicamycin V and Discovery of a Cytostatic DPAGT1 Inhibitor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katsuhiko Mitachi
- The University of Tennessee Health Science Center College of Pharmacy Pharmacy 881 Madison AvenueROOM 557 38163 MEMPHS UNITED STATES
| | - David Mingle
- The University of Tennessee Health Science Center College of Pharmacy Pharmacy 881 MADISON AVE 38163 MEMPHS UNITED STATES
| | - Wendy Effah
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Medicine UNITED STATES
| | | | - Kirk E. Hevener
- UTHSC College of Pharmacy Memphis: The University of Tennessee Health Science Center College of Pharmacy Pharmacy UNITED STATES
| | - Ramesh Narayanan
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Medicine 19, S. Manassas 38013 Memphis UNITED STATES
| | - William M. Clemons
- Caltech: California Institute of Technology Chemistry and Chemical Engineering UNITED STATES
| | - Francisco Sarabia
- University of Malaga: Universidad de Malaga Organic Chemistry UNITED STATES
| | - Michio Kurosu
- UTHSC College of Pharmacy Memphis: The University of Tennessee Health Science Center College of Pharmacy Department of Pharmaceutical Sciences, College of Pharmacy 881 MADISON AVEROOM 557 38163 Memphis UNITED STATES
| |
Collapse
|
4
|
Ibezim A, Osigwe S, Uzor P, Engel N, Ramanathan K, Nwodo N. Computational studies reveal potential dolichyl-phosphate N-acetylglucosaminephosphotransferase inhibitors amidst existing drugs. J Biomol Struct Dyn 2022:1-8. [PMID: 35467485 DOI: 10.1080/07391102.2022.2064916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dolichyl-phosphate N-acetylglucosaminephosphotransferase (dpagt1) inhibition is reported to kill tumor cells whose growth progression requires increased branching of N-linked glycans. Available dpagt1 inhibitors are grossly limited and are faced with problems of heamolytic effect and aqueous solubility thereby necessitating the search for new, safe and effective dpagt1 inhibitors. We employed computational methods to screen a dataset of ∼1300 FDA approved drugs in order to obtain theoretical dpagt1 inhibitors which could be repurposed as chemotherapeutic drugs. Top six better performing drugs, binding affinity for dpagt1 at the range of -17.63 to -20.40 kcal/mol, than the reference ligand (tunicamycin; -14.86 kcal/mol) were obtained at the end of structure-based-pharmacophore- and virtual-screening and 'induced fit' docking calculations. Analysis of their binding poses identified essential pharmacophores involved in target-ligand complexation that could be targeted in chemical modification to develop more effective and safe dpagt1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akachukwu Ibezim
- Department of Pharmaceutical and Medicinal, University of Nigeria, Nsukka, Nigeria.,Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Sochi Osigwe
- Department of Pharmaceutical and Medicinal, University of Nigeria, Nsukka, Nigeria
| | - Philip Uzor
- Department of Pharmaceutical and Medicinal, University of Nigeria, Nsukka, Nigeria
| | - Nadja Engel
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | | | - Ngozi Nwodo
- Department of Pharmaceutical and Medicinal, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
5
|
Kurosu M, Mitachi K, Yang J, Pershing EV, Horowitz BD, Wachter EA, Lacey JW, Ji Y, Rodrigues DJ. Antibacterial Activity of Pharmaceutical-Grade Rose Bengal: An Application of a Synthetic Dye in Antibacterial Therapies. Molecules 2022; 27:322. [PMID: 35011554 PMCID: PMC8746496 DOI: 10.3390/molecules27010322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/27/2022] Open
Abstract
Rose bengal has been used in the diagnosis of ophthalmic disorders and liver function, and has been studied for the treatment of solid tumor cancers. To date, the antibacterial activity of rose bengal has been sporadically reported; however, these data have been generated with a commercial grade of rose bengal, which contains major uncontrolled impurities generated by the manufacturing process (80-95% dye content). A high-purity form of rose bengal formulation (HP-RBf, >99.5% dye content) kills a battery of Gram-positive bacteria, including drug-resistant strains at low concentrations (0.01-3.13 μg/mL) under fluorescent, LED, and natural light in a few minutes. Significantly, HP-RBf effectively eradicates Gram-positive bacterial biofilms. The frequency that Gram-positive bacteria spontaneously developed resistance to HP-RB is extremely low (less than 1 × 10-13). Toxicity data obtained through our research programs indicate that HP-RB is feasible as an anti-infective drug for the treatment of skin and soft tissue infections (SSTIs) involving multidrug-resistant (MDR) microbial invasion of the skin, and for eradicating biofilms. This article summarizes the antibacterial activity of pharmaceutical-grade rose bengal, HP-RB, against Gram-positive bacteria, its cytotoxicity against skin cells under illumination conditions, and mechanistic insights into rose bengal's bactericidal activity under dark conditions.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA;
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA;
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA; (J.Y.); (Y.J.)
| | - Edward V. Pershing
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Bruce D. Horowitz
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Eric A. Wachter
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - John W. Lacey
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA; (J.Y.); (Y.J.)
| | - Dominic J. Rodrigues
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| |
Collapse
|
6
|
Mitachi K, Kansal RG, Hevener KE, Gillman CD, Hussain SM, Yun HG, Miranda-Carboni GA, Glazer ES, Clemons WM, Kurosu M. DPAGT1 Inhibitors of Capuramycin Analogues and Their Antimigratory Activities of Solid Tumors. J Med Chem 2020; 63:10855-10878. [PMID: 32886511 DOI: 10.1021/acs.jmedchem.0c00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Capuramycin displays a narrow spectrum of antibacterial activity by targeting bacterial translocase I (MraY). In our program of development of new N-acetylglucosaminephosphotransferase1 (DPAGT1) inhibitors, we have identified that a capuramycin phenoxypiperidinylbenzylamide analogue (CPPB) inhibits DPAGT1 enzyme with an IC50 value of 200 nM. Despite a strong DPAGT1 inhibitory activity, CPPB does not show cytotoxicity against normal cells and a series of cancer cell lines. However, CPPB inhibits migrations of several solid cancers including pancreatic cancers that require high DPAGT1 expression in order for tumor progression. DPAGT1 inhibition by CPPB leads to a reduced expression level of Snail but does not reduce E-cadherin expression level at the IC50 (DPAGT1) concentration. CPPB displays a strong synergistic effect with paclitaxel against growth-inhibitory action of a patient-derived pancreatic adenocarcinoma, PD002: paclitaxel (IC50: 1.25 μM) inhibits growth of PD002 at 0.0024-0.16 μM in combination with 0.10-2.0 μM CPPB (IC50: 35 μM).
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Rita G Kansal
- Department of Surgery and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, 910 Madison St., Suite 300, Memphis, Tennessee 38163, United States
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Cody D Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Syed M Hussain
- Department of Surgery and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, 910 Madison St., Suite 300, Memphis, Tennessee 38163, United States
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Gustavo A Miranda-Carboni
- Department of Medicine, Division of Hematology-Oncology, University of Tennessee Health Science Center, 19 S. Manassas Avenue, Memphis, Tennessee 38163, United States
| | - Evan S Glazer
- Department of Surgery and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, 910 Madison St., Suite 300, Memphis, Tennessee 38163, United States
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
7
|
Patel B, Kerr RV, Malde AK, Zunk M, Bugg TDH, Grant G, Rudrawar S. Simplified Novel Muraymycin Analogues; using a Serine Template Strategy for Linking Key Pharmacophores. ChemMedChem 2020; 15:1429-1438. [PMID: 32476294 DOI: 10.1002/cmdc.202000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/25/2020] [Indexed: 12/15/2022]
Abstract
The present status of antibiotic research requires the urgent invention of novel agents that act on multidrug-resistant bacteria. The World Health Organization has classified antibiotic-resistant bacteria into critical, high and medium priority according to the urgency of need for new antibiotics. Naturally occurring uridine-derived "nucleoside antibiotics" have shown promising activity against numerous priority resistant organisms by inhibiting the transmembrane protein MraY (translocase I), which is yet to be explored in a clinical context. The catalytic activity of MraY is an essential process for bacterial cell viability and growth including that of priority organisms. Muraymycins are one subclass of naturally occurring MraY inhibitors. Despite having potent antibiotic properties, the structural complexity of muraymycins advocates for simplified analogues as potential lead structures. Herein, we report a systematic structure-activity relationship (SAR) study of serine template-linked, simplified muraymycin-type analogues. This preliminary SAR lead study of serine template analogues successfully revealed that the complex structure of naturally occurring muraymycins could be easily simplified to afford bioactive scaffolds against resistant priority organisms. This study will pave the way for the development of novel antibacterial lead compounds based on a simplified serine template.
Collapse
Affiliation(s)
- Bhautikkumar Patel
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Rachel V Kerr
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.,MaldE Scientific, Australia
| | - Matthew Zunk
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gary Grant
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
8
|
Mitachi K, Yun HG, Gillman CD, Skorupinska-Tudek K, Swiezewska E, Clemons WM, Kurosu M. Substrate Tolerance of Bacterial Glycosyltransferase MurG: Novel Fluorescence-Based Assays. ACS Infect Dis 2020; 6:1501-1516. [PMID: 31769280 DOI: 10.1021/acsinfecdis.9b00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MurG (uridine diphosphate-N-acetylglucosamine/N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase) is an essential bacterial glycosyltransferase that catalyzes the N-acetylglucosamine (GlcNAc) transformation of lipid I to lipid II during peptidoglycan biosynthesis. Park's nucleotide has been a convenient biochemical tool to study the function of MraY (phospho-MurNAc-(pentapeptide) translocase) and MurG; however, no fluorescent probe has been developed to differentiate individual processes in the biotransformation of Park's nucleotide to lipid II via lipid I. Herein, we report a robust assay of MurG using either the membrane fraction of a M. smegmatis strain or a thermostable MraY and MurG of Hydrogenivirga sp. as enzyme sources, along with Park's nucleotide or Park's nucleotide-Nε-C6-dansylthiourea and uridine diphosphate (UDP)-GlcN-C6-FITC as acceptor and donor substrates. Identification of both the MraY and MurG products can be performed simultaneously by HPLC in dual UV mode. Conveniently, the generated lipid II fluorescent analogue can also be quantitated via UV-Vis spectrometry without the separation of the unreacted lipid I derivative. The microplate-based assay reported here is amenable to high-throughput MurG screening. A preliminary screening of a collection of small molecules has demonstrated the robustness of the assays and resulted in rediscovery of ristocetin A as a strong antimycobacterial MurG and MraY inhibitor.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Cody D. Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Ewa Swiezewska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
9
|
Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. J Antibiot (Tokyo) 2020; 73:780-789. [PMID: 32472054 DOI: 10.1038/s41429-020-0320-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023]
Abstract
Discovery of new anti-tuberculosis (TB) drugs is a time-consuming process due to the slow-growing nature of Mycobacterium tuberculosis (Mtb). A requirement of biosafety level 3 (BSL-3) facility for performing research associated with Mtb is another limitation for the development of TB drug discovery. In our screening of BSL-1 Mycobacterium spp. against a battery of TB drugs, M. smegmatis (ATCC607) exhibits good agreement with its drug susceptibility against the TB drugs under a low-nutrient culture medium (0.5% Tween 80 in Middlebrook 7H9 broth). M. smegmatis (ATCC607) enters its dormant form in 14 days under a nutrient-deficient condition (a PBS buffer), and shows resistance to a majority of TB drugs, but shows susceptibility to amikacin, capreomycin, ethambutol, and rifampicin (with high concentrations) whose activities against non-replicating (or dormant) Mtb were previously validated.
Collapse
|
10
|
Ju M, Qi A, Bi J, Zhao L, Jiang L, Zhang Q, Wei Q, Guan Q, Li X, Wang L, Wei M, Zhao L. A five-mRNA signature associated with post-translational modifications can better predict recurrence and survival in cervical cancer. J Cell Mol Med 2020; 24:6283-6297. [PMID: 32306508 PMCID: PMC7294153 DOI: 10.1111/jcmm.15270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
High mortality of patients with cervical cancer (CC) stresses the imperative of prognostic biomarkers for CC patients. Additionally, the vital status of post‐translational modifications (PTMs) in the progression of cancers has been reported by numerous researches. Therefore, the purpose of this research was to dig a prognostic signature correlated with PTMs for CC. We built a five‐mRNA (GALNTL6, ARSE, DPAGT1, GANAB and FURIN) prognostic signature associated with PTMs to predict both disease‐free survival (DFS) (hazard ratio [HR] = 3.967, 95% CI = 1.985‐7.927; P < .001) and overall survival (HR = 2.092, 95% CI = 1.138‐3.847; P = .018) for CC using data from The Cancer Genome Atlas database. Then, the robustness of the signature was validated using GSE44001 and the Human Protein Atlas (HPA) database. CIBERSORT algorithm analysis displayed that activated CD4 memory T cell was also an independent indicator for DFS (HR = 0.426, 95% CI = 0.186‐0.978; P = .044) which could add additional prognostic value to the signature. Collectively, the PTM‐related signature and activated CD4 memory T cell can provide new avenues for the prognostic predication of CC. These findings give further insights into effective treatment strategies for CC, providing opportunities for further experimental and clinical validations.
Collapse
Affiliation(s)
- Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Aoshuang Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Xueping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang City, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang City, Liaoning, China
| |
Collapse
|
11
|
Structure-based drug discovery by targeting N-glycan biosynthesis, dolichyl-phosphate N-acetylglucosaminephosphotransferase. Future Med Chem 2019; 11:927-933. [PMID: 30907628 DOI: 10.4155/fmc-2018-0405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|