1
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Nakamura Y, Irisawa K, Makino K, Shimada N. Boronic Acid/Palladium Hybrid Catalysis for Regioselective O-Allylation of Carbohydrates. J Org Chem 2024. [PMID: 38194418 DOI: 10.1021/acs.joc.3c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Novel imidazole-containing boronic acid and palladium hybrid catalysis for regioselective O-allylation of carbohydrates has been developed. This catalytic process enables the introduction of a useful allyl functional group into the equatorial hydroxy group of cis-1,2-diols of various carbohydrates with low catalyst loading and excellent regioselectivities. This is the first report on hybrid catalysis in combination with a Lewis base-containing boronic acid and a transition metal complex.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuma Irisawa
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
3
|
Buntasana S, Padungros P. Glycosylation of n-pentenyl glycosides using bromodiethylsulfonium salt as an activator: interception of the glycosyl intermediate by chloride ion transfer. Org Biomol Chem 2023; 22:126-143. [PMID: 38051124 DOI: 10.1039/d3ob01618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Utilization of n-pentenyl glycosides (NPGs) in modern carbohydrate synthesis may be hindered by their sluggish activation, which results from reversible halogenation and cyclization processes. Bromodiethylsulfonium bromopentachloroantimonate (BDSB) has been previously shown to be a powerful brominating agent for the cation-π polyene cyclization of less reactive and electron-poor polyenes. This study demonstrates the activation of NPGs using BDSB as a powerful brominating agent. BDSB effectively activates the terminal olefins of NPGs and the reaction proceeds through 5-exo-tet cyclization, offering a rapid and mild approach for glycosylation with a wide range of glycosyl donors, including n-pentenyl mannoside, n-pentenyl galactoside, and n-pentenyl glucoside. The success of this approach derives from the chloride ion transfer from the nonnucleophilic SbCl5Br anion to the glycosyl intermediate, which disrupts the equilibrium and produces a glycosyl chloride intermediate that is smoothly converted to 22 coupling products, with yields ranging from moderate to excellent (49-100%). The β-selective glycosylation is accomplished when employing NPGs equipped with a neighboring participating group. The practicality of the BDSB-activated glycosylation is demonstrated by a gram-scale synthesis. This study showcases BDSB as a potent activator for NPG glycosylation through the interception of a glycosyl intermediate that diminishes the equilibration during halogenation and 5-exo-tet cyclization.
Collapse
Affiliation(s)
- Supanat Buntasana
- Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Karpenko MY, Abronina PI, Zinin AI, Chizhov AO, Kononov LO. TIPS group-assisted isomerization of benzyl protected d-manno- and d-glucopyranose to d-fructofuranose derivatives. Carbohydr Res 2023; 534:108942. [PMID: 37769375 DOI: 10.1016/j.carres.2023.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Base-promoted (MeONa in MeOH or imidazole in DMF) isomerization of a series of 3,4,6-tri-O-benzyl-d-gluco- and d-mannopyranose derivatives with triisopropylsilyl (TIPS) substituents was studied. The presence of a bulky TIPS group at O-1 or O-2 was shown to be favorable for the isomerization of benzyl protected d-gluco- and d-mannopyranose derivatives to d-fructofuranose derivatives, in which the bulky silyl group occupies less sterically hindered primary position. The highest yield (33%) of the fructofuranose derivative was achieved when 3,4,6-tri-O-benzyl-2-O-triisopropylsilyl-d-mannopyranose was treated with MeONa in MeON at 50 °C.
Collapse
Affiliation(s)
- Maxim Y Karpenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
5
|
Lakshika Hettiarachchi I, Wu F, Stoica M, Li X, Zhu J. Potassium carbonate-mediated β-selective anomeric O-alkylation with primary electrophiles: Application to the synthesis of glycosphingolipids. Tetrahedron Lett 2023; 122:154511. [PMID: 37334260 PMCID: PMC10270675 DOI: 10.1016/j.tetlet.2023.154511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Stereoselective construction of a variety of β-glycosides can be achieved using abundant and inexpensive K2CO3-mediated stereoselective anomeric O-alkylation of sugar lactols with primary electrophiles. In addition, application of this methodology to the synthesis of various azido-modified glycosphingolipids has been accomplished in good yields and excellent anomeric selectivity using sphingosine-derived primary triflate.
Collapse
Affiliation(s)
- Ishani Lakshika Hettiarachchi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Maria Stoica
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
6
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Rao VUB, Wang C, Demarque DP, Grassin C, Otte F, Merten C, Strohmann C, Loh CCJ. A synergistic Rh(I)/organoboron-catalysed site-selective carbohydrate functionalization that involves multiple stereocontrol. Nat Chem 2023; 15:424-435. [PMID: 36585443 PMCID: PMC9986112 DOI: 10.1038/s41557-022-01110-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Site-selective functionalization is a core synthetic strategy that has broad implications in organic synthesis. Particularly, exploiting chiral catalysis to control site selectivity in complex carbohydrate functionalizations has emerged as a leading method to unravel unprecedented routes into biologically relevant glycosides. However, robust catalytic systems available to overcome multiple facets of stereoselectivity challenges to this end still remain scarce. Here we report a synergistic chiral Rh(I)- and organoboron-catalysed protocol, which enables access into synthetically challenging but biologically relevant arylnaphthalene glycosides. Our method depicts the employment of chiral Rh(I) catalysis in site-selective carbohydrate functionalization and showcases the utility of boronic acid as a compatible co-catalyst. Crucial to the success of our method is the judicious choice of a suitable organoboron catalyst. We also determine that exquisite multiple aspects of stereocontrol, including enantio-, diastereo-, regio- and anomeric control and dynamic kinetic resolution, are concomitantly operative.
Collapse
Affiliation(s)
- V U Bhaskara Rao
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
- Fakültät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Caiming Wang
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
- Fakültät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | | | | | - Felix Otte
- Department of Inorganic Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | | | - Carsten Strohmann
- Department of Inorganic Chemistry, Technische Universität Dortmund, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.
- Fakültät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany.
| |
Collapse
|
8
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
9
|
Feng Y, Guo T, Yang H, Liu G, Zhang Q, Zhang S, Chai Y. Ni(II)-Catalyzed Regio- and Stereoselective O-Alkylation for the Construction of 1,2- cis-Glycosidic Linkages. Org Lett 2022; 24:6282-6287. [PMID: 35981295 DOI: 10.1021/acs.orglett.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal-catalyzed O-alkylation for the regio- and stereoselective construction of 1,2-cis-glycosidic linkages is presented. With nonprecious and readily available Ni(II) as a catalyst, 1,2-cis-glycosides were obtained via O-alkylation of 1,2-carbohydrate diols that can be accessed in a small number of steps. The tedious design of protecting groups or anomeric leaving groups could be avoided with this method. The strategy was applied for the efficient preparation of an important commercialized glycosidic compatible solute GG, its derivative MGG, and a branched α-glucan.
Collapse
Affiliation(s)
- Yingle Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Tiantian Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Han Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Guoqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
10
|
Li G, Luo Y, Mo J, Noguchi M, Jing J, Luo Z, Shoda SI, Ye XS. Hydrogen bond-assisted 1,2-cis O-glycosylation under mild hydrogenolytic conditions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Mukherjee MM, Ghosh R, Hanover JA. Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Front Mol Biosci 2022; 9:896187. [PMID: 35775080 PMCID: PMC9237389 DOI: 10.3389/fmolb.2022.896187] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Carbohydrates involving glycoconjugates play a pivotal role in many life processes. Better understanding toward glycobiological events including the structure–function relationship of these biomolecules and for diagnostic and therapeutic purposes including tailor-made vaccine development and synthesis of structurally well-defined oligosaccharides (OS) become important. Efficient chemical glycosylation in high yield and stereoselectivity is however challenging and depends on the fine tuning of a protection profile to get matching glycosyl donor–acceptor reactivity along with proper use of other important external factors like catalyst, solvent, temperature, activator, and additive. So far, many glycosylation methods have been reported including several reviews also. In the present review, we will concentrate our discussion on the recent trend on α- and β-selective glycosylation reactions reported during the past decade.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| |
Collapse
|
12
|
Meng S, Hettiarachchi IL, Bhetuwal BR, Thapa P, Zhu J. Stereoselective Synthesis of β-d-Manno-heptopyranoside via Cs 2CO 3-Mediated Anomeric O-Alkylation: Synthesis of a Tetrasaccharide Repeat Unit of Bacillus thermoaerophilus Surface-Layer Glycoprotein. J Org Chem 2022; 87:6588-6600. [PMID: 35537215 PMCID: PMC9166265 DOI: 10.1021/acs.joc.2c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stereoselective synthesis of d-glycero- and l-glycero-β-d-mannoheptosides has been achieved by cesium carbonate-mediated β-selective anomeric O-alkylation of the corresponding d-mannoheptoses. In addition, this method has been utilized in the total synthesis of a tetrasaccharide repeat unit of Bacillus thermoaerophilus surface-layer glycoprotein.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Ishani Lakshika Hettiarachchi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
13
|
Javed, Khanam A, Mandal PK. Glycosyl 3-Phenyl-4-pentenoates as Versatile Glycosyl Donors: Reactivity and Their Application in One-Pot Oligosaccharide Assemblies. J Org Chem 2022; 87:6710-6729. [PMID: 35522927 DOI: 10.1021/acs.joc.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both glycoconjugates and oligosaccharides are important biomolecules having significant roles in several biological processes, and a new strategy for their synthesis is crucial. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf) promoted glycosidation approach with shelf-stable 3-phenyl-4-pentenoate glycosyl as a donor for the efficient synthesis of O/C-glycosides with free alcohols, silylated alcohols, and C-type nucleophile acceptors in good to excellent yields. The mild activation conditions and outstanding reactivity of phenyl substituted pentenoate donors analogous to 4-pentenoate glycosyl donors enhance their applicability to various one-pot strategies for the synthesis of oligosaccharides, such as single-catalyst one-pot and acceptor reactivity-controlled one-pot strategies.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Hettiarachchi IL, Meng S, Chahine M, Li X, Zhu J. Stereoselective β-Mannosylation via Anomeric O-Alkylation with L-Sugar-Derived Electrophiles. European J Org Chem 2021; 2021:6682-6687. [PMID: 35990817 PMCID: PMC9389860 DOI: 10.1002/ejoc.202100903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 02/04/2024]
Abstract
A total synthesis of the trisaccharide repeat unit of Salmonella serogroup E1 O-antigen is reported. This synthesis features a key β-mannosylation reaction via cesium carbonate-mediated anomeric O-alkylation of a partially protected D-mannose with an L-fucose-derived electrophile for the first time.
Collapse
Affiliation(s)
- Ishani Lakshika Hettiarachchi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States. https://www.utoledo.edu/nsm/chemistry/people/Webpages/Zhu.html
| | - Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States. https://www.utoledo.edu/nsm/chemistry/people/Webpages/Zhu.html
| | - Mira Chahine
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States. https://www.utoledo.edu/nsm/chemistry/people/Webpages/Zhu.html
| |
Collapse
|
15
|
Shimada N, Sugimoto T, Noguchi M, Ohira C, Kuwashima Y, Takahashi N, Sato N, Makino K. Boronic Acid-Catalyzed Regioselective Koenigs-Knorr-Type Glycosylation. J Org Chem 2021; 86:5973-5982. [PMID: 33829786 DOI: 10.1021/acs.joc.1c00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boronic acid-catalyzed regioselective Koenigs-Knorr-type glycosylation is presented. The reaction of an unprotected or partially protected glycosyl acceptor with a glycosyl halide donor in the presence of silver oxide and a low catalytic amount of imidazole-containing boronic acid was found to proceed smoothly, which enables construction of a 1,2-trans glycosidic linkage with high regioselectivities. This is the first example of the use of a boronic acid catalyst to initiate regioselective glycosylation via the activation of cis-vicinal diols in glycosyl acceptors.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Tomoya Sugimoto
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Mao Noguchi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Chikako Ohira
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yutaro Kuwashima
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoya Takahashi
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Noriko Sato
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
16
|
Izumi S, Kobayashi Y, Takemoto Y. Stereoselective Synthesis of 1,1′‐Disaccharides by Organoboron Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sanae Izumi
- Graduate School of Pharmaceutical Sciences Kyoto University 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences Kyoto University 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
17
|
Kobayashi Y, Takemoto Y. Regio- and stereoselective glycosylation of 1,2-O-unprotected sugars using organoboron catalysts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Stereoselective Synthesis of 1,1′‐Disaccharides by Organoboron Catalysis. Angew Chem Int Ed Engl 2020; 59:14054-14059. [DOI: 10.1002/anie.202004476] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/12/2022]
|
19
|
Meng S, Bhetuwal BR, Nguyen H, Qi X, Fang C, Saybolt K, Li X, Liu P, Zhu J. β-Mannosylation via O-Alkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated N-Linked Glycans. European J Org Chem 2020; 2020:2291-2301. [PMID: 32431565 PMCID: PMC7236807 DOI: 10.1002/ejoc.202000313] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/11/2022]
Abstract
A number of structurally diverse D-mannose-derived lactols, including various deoxy-D-mannoses and conformationally restricted bicyclic D-mannoses, have been synthesized and investigated in mechanistic studies of β-mannosylation via Cs2CO3-mediated anomeric O-alkylation. It was found that deoxy mannoses or conformationally restricted bicyclic D-mannoses are not as reactive as their corresponding parent mannose. This type of β-mannosylation proceeds efficiently when the C2-OH is left free, and protection of that leads to inferior results. NMR studies of D-mannose-derived anomeric cesium alkoxides indicated the predominance of the equatorial β-anomer after deprotonation. Reaction progress kinetic analysis suggested that monomeric cesium alkoxides be the key reactive species for alkylation with electrophiles. DFT calculations supported that oxygen atoms at C2, C3, and C6 of mannose promote the deprotonation of the anomeric hydroxyl group by Cs2CO3 and chelating interactions between Cs and these oxygen atoms favour the formation of equatorial anomeric alkoxides, leading to the highly β-selective anomeric O-alkylation. Based on experimental data and computational results, a revised mechanism for this β-mannosylation is proposed. The utilization of this β-mannosylation was demonstrated by an efficient synthesis of the hexasaccharide core of complex fucosylated N-linked glycans.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Hai Nguyen
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Cheng Fang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Saybolt
- Department of Natural Sciences, University of Michigan‒Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan‒Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
20
|
Meng S, Zhong W, Yao W, Li Z. Stereoselective Phenylselenoglycosylation of Glycals Bearing a Fused Carbonate Moiety toward the Synthesis of 2-Deoxy-β-galactosides and β-Mannosides. Org Lett 2020; 22:2981-2986. [PMID: 32216320 DOI: 10.1021/acs.orglett.0c00732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A phenylselenoglycosylation reaction of glycal derivatives mediated by diphenyl diselenide and phenyliodine(III) bis(trifluoroacetate) under mild conditions is described. Stereoselective glycosylation has been achieved by installing fused carbonate on those glycals. 3,4-O-Carbonate galactals and 2,3-O-carbonate 2-hydroxyglucals are converted into corresponding glycosides in good yields with excellent β-selectivity, resulting in 2-phenylseleno-2-deoxy-β-galactosides and 2-phenylseleno-β-mannosides which are good precursors of 2-deoxy-β-galactosides and β-mannosides, respectively.
Collapse
Affiliation(s)
- Shuai Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wenhe Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
21
|
Carden JL, Dasgupta A, Melen RL. Halogenated triarylboranes: synthesis, properties and applications in catalysis. Chem Soc Rev 2020; 49:1706-1725. [PMID: 32100762 DOI: 10.1039/c9cs00769e] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Halogenated triarylboranes (BAr3) have been known for decades, however it has only been since the surge of interest in main group catalysis that their application as strong Lewis acid catalysts has been recognised. This review aims to look past the popular tris(pentafluorophenyl)borane [B(C6F5)3] to the other halogenated triarylboranes, to give a greater breadth of understanding as to how tuning the Lewis acidity of BAr3 by modifications of the aryl rings can lead to improved reactivity. In this review, a discussion on Lewis acidity determination of boranes is given, the synthesis of these boranes is discussed, and examples of how they are being used for catalysis and frustrated Lewis pair (FLP) chemistry are explained.
Collapse
Affiliation(s)
- Jamie L Carden
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | | | | |
Collapse
|
22
|
Kuwano S, Hosaka Y, Arai T. Chiral Benzazaborole‐Catalyzed Regioselective Sulfonylation of Unprotected Carbohydrate Derivatives. Chemistry 2019; 25:12920-12923. [DOI: 10.1002/chem.201903443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC)Chiba Iodine Resource Innovation Center (CIRIC)Molecular Chirality Research Center (MCRC)Synthetic Organic ChemistryDepartment of ChemistryGraduate School of ScienceChiba University 1–33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yusei Hosaka
- Soft Molecular Activation Research Center (SMARC)Chiba Iodine Resource Innovation Center (CIRIC)Molecular Chirality Research Center (MCRC)Synthetic Organic ChemistryDepartment of ChemistryGraduate School of ScienceChiba University 1–33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC)Chiba Iodine Resource Innovation Center (CIRIC)Molecular Chirality Research Center (MCRC)Synthetic Organic ChemistryDepartment of ChemistryGraduate School of ScienceChiba University 1–33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
23
|
Shimada N, Nakamura Y, Ochiai T, Makino K. Catalytic Activation of Cis-Vicinal Diols by Boronic Acids: Site-Selective Acylation of Carbohydrates. Org Lett 2019; 21:3789-3794. [DOI: 10.1021/acs.orglett.9b01231] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takayuki Ochiai
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|