1
|
Wang J, Ji N, Gao Z, Tang XY, Wang L. Synthesis of 2-Sulfonyl Carbazoles via Oxidative C-H Functionalization of Tetrahydrocarbazoles with Sulfonyl Hydrazides. Org Lett 2025; 27:821-826. [PMID: 39797814 DOI: 10.1021/acs.orglett.4c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Herein, we report an approach for the synthesis of 2-sulfonyl carbazoles from the oxidative C-H sulfonylation of tetrahydrocarbazoles. The mechanistic study reveals that this special selectivity is realized by the addition of a sulfonyl radical to the 3,4-dihydrocabazole intermediate via dehydrogenative desaturation of tetrahydrocarbazoles. This approach features readily available starting materials, high regioselectivity, broad substrate scope, and attractive synthetic utility.
Collapse
Affiliation(s)
- Jiahua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Na Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zifeng Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
2
|
Abstract
The interest of scientists in the carbazole core has risen steadily over the last 30 years, particularly over the last decade given its presence in several active pharmaceutical ingredients, functional materials and a wide range of biologically active natural products. The continuous development of more efficient, more (regio-)selective and "greener" methodologies to access the carbazole core is thus imperative. This review compares and evaluates synthetic strategies towards the carbazole core that have been reported since 2013, with a focus on their applicability towards the total synthesis of carbazole-containing natural products.
Collapse
Affiliation(s)
- Lewis A T Allen
- CheMastery, Paper Yard, 11a Quebec Way, London, SE16 7LG, UK
| | - Philipp Natho
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
3
|
Zhao H, Shen P, Sun D, Zhai H, Zhao Y. The Regioselective Functionalization Reaction of Unprotected Carbazoles with Donor-Acceptor Cyclopropanes. J Org Chem 2021; 86:9189-9199. [PMID: 34111921 DOI: 10.1021/acs.joc.1c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regioselective functionalization reaction of unprotected carbazoles with donor-acceptor (D-A) cyclopropanes has been demonstrated for the first time. With Sc(OTf)3 as Lewis acid catalyst, the N-H functionalization of carbazoles takes place through a highly selective nitrogen-initiated nucleophilic ring opening reaction. Significantly, by engaging TfOH as Brønsted acid catalyst, a straightforward C-H functionalization at the 3-position of the unprotected carbazole proceeds via Friedel-Crafts-type addition. This strategy facilitates the diversity-oriented synthesis of carbazole-containing heterocycles and expands the novel application of D-A cyclopropanes.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Shen
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
4
|
A facile access to 2-substituted naphtho[2,3-g]quinoline-3-carboxylic acid esters via intramolecular cyclization and PyBOP-promoted functionalization. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Martínez-Lara F, Suárez A, Suárez-Pantiga S, Tapia MJ, Sanz R. Straight access to highly fluorescent angular indolocarbazoles via merging Au- and Mo-catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00405g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A straightforward and efficient synthesis of the two less explored types of indolocarbazoles has been developed giving rise to highly fluorescent compounds with fluorescence quantum yields around 0.7.
Collapse
Affiliation(s)
| | - Anisley Suárez
- Departamento de Química
- Facultad de Ciencias
- Universidad de Burgos
- 09001-Burgos
- Spain
| | | | - M. José Tapia
- Departamento de Química
- Facultad de Ciencias
- Universidad de Burgos
- 09001-Burgos
- Spain
| | - Roberto Sanz
- Departamento de Química
- Facultad de Ciencias
- Universidad de Burgos
- 09001-Burgos
- Spain
| |
Collapse
|
6
|
Zhang L, Hu J, Xu R, Pan S, Zeng X, Zhong G. Catalytic Asymmetric Dearomative [3+2] Cyclisation of 1,4‐Quinone with 2,3‐Disubstituted Indoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lvye Zhang
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Jinjin Hu
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Ruigang Xu
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Shulei Pan
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 People's Republic of China
| |
Collapse
|
7
|
Yaragorla S, Dada R, Bag D. An Expeditious Benzannulation Reaction of Indol-3-yl-but-3-yn-2-ols to Substituted 2-Iodocarbazoles via Domino 5-endo
Spirocyclization/Selective Vinyl Shift and Aromatization. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry; University of Hyderabad; Prof. C. R. Rao Road Gachibowli Hyderabad 500046 India
| | - Ravikrishna Dada
- School of Chemistry; University of Hyderabad; Prof. C. R. Rao Road Gachibowli Hyderabad 500046 India
| | - Debojyoti Bag
- School of Chemistry; University of Hyderabad; Prof. C. R. Rao Road Gachibowli Hyderabad 500046 India
| |
Collapse
|