1
|
Wei XH, Xue YW, Jiang XM, Quan GG, Ye JQ, Guo X, Liu X. Acid-Promoted Phosphorylation of Ynones for the Synthesis of Phosphoryl Enones. Org Lett 2025; 27:1124-1129. [PMID: 39849914 DOI: 10.1021/acs.orglett.4c04531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
An efficient phospha-aldol/Meyer-Schuster rearrangement cascade reaction between propargylic aldehydes and phosphine oxides has been developed in which various phosphoryl enones were obtained in moderate to excellent yields. A comprehensive series of mechanistic experiments, including the identification of key intermediates and the application of 18O isotope labeling, has confirmed that this cascade reaction proceeds through a phospha-aldol followed by Meyer-Schuster rearrangement cascade reaction.
Collapse
Affiliation(s)
- Xiao-Hong Wei
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Ya-Wen Xue
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Xiu-Mei Jiang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Gang-Gui Quan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Jia-Qiang Ye
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Xu Guo
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Xuan Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, P. R. China
| |
Collapse
|
2
|
Zheng JY, Wang F, Zhang Y, Zheng Z, Wu JH, Ren X, Su Z, Chen W, Wang T. Novel Stereo-Induction Pattern in Pudovik Addition/Phospha-Brook Rearrangement Towards Chiral Trisubstituted Allenes. Angew Chem Int Ed Engl 2024; 63:e202403707. [PMID: 38520267 DOI: 10.1002/anie.202403707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
Despite the significance of chiral allene skeletons in catalysis, organic synthesis and medicinal chemistry et al., there is a scarcity of reports on axially chiral allenyl phosphorus compounds. Here, we disclosed an efficient and straightforward cascade reaction between ethynyl ketones and phosphine oxides, resulting in a broad array of trisubstituted allenes incorporating a phosphorus moiety in high yields with excellent stereoselectivities facilitated by peptide-mimic phosphonium salt (PPS) catalysis, Additionally, comprehensive series of mechanistic experiments have been conducted to elucidate that this cascade reaction proceeds via an asymmetric Pudovik addition reaction followed by a subsequent phospha-Brook rearrangement that occurs concomitantly with kinetic resolution, representing a stereospecific rearrangement and protonation process facilitating central-to-axial chirality transfer in a cascade manner. We anticipate that our research will pave the way for a promising exploration of novel stereo-induction pattern in the Pudovik addition/phospha-Brook rearrangement cascade reaction.
Collapse
Affiliation(s)
- Jia-Yan Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Fan Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Zhao Y, Li S, Fan Y, Wang H, Kang X, Ji Z, Tian L. Synthesis of Polycyclic 3,3′-Biindoles via AgOTf-Catalyzed Nucleophilic Addition and Cycloisomerization. J Org Chem 2022; 87:6418-6425. [DOI: 10.1021/acs.joc.2c00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Huimin Wang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xin Kang
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhongyin Ji
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Laijin Tian
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
4
|
Min XL, Zhang XL, Yi W, He Y. Brønsted acid-enhanced copper-catalyzed atroposelective cycloisomerization to axially chiral arylquinolizones via dearomatization of pyridine. Nat Commun 2022; 13:373. [PMID: 35042873 PMCID: PMC8766466 DOI: 10.1038/s41467-022-27989-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 01/17/2023] Open
Abstract
The construction of axially chiral N-heterobiaryls is of great interest as a result of their occurrence in organocatalysts, chiral ligands, natural products, and biologically active molecules. Despite remarkable achievements in this area, strategies for the preparation of new classes of axially chiral N-heterobiaryls remain to be further explored. Herein, we report the enantioselective synthesis of axially chiral arylquinolizones through an intramolecular atroposelective cycloisomerization. The reaction proceeds via the Brønsted acid-enhanced dearomatization of pyridine by a copper catalyst that allows for the formation of the desired products in excellent yields and enantioselectivities. The utility of this methodology is illustrated by a synthesis on gram scale production and transformation of the products into chiral thiourea catalysts. Mechanistic studies demonstrate that Brønsted acid plays a significant role in promoting the reactivity of the reaction, while both the steric and electronic effects of aryl substituents in substrate play a role in controlling the stereoselectivity.
Collapse
Affiliation(s)
- Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
5
|
Shen YB, Zhao JQ, Wang ZH, You Y, Zhou MQ, Yuan WC. DBU-catalyzed dearomative annulation of 2-pyridylacetates with α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones. Org Chem Front 2022. [DOI: 10.1039/d1qo01414e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DBU-catalyzed dearomative [3 + 3] annulation of 2-pyridylacetates and α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones was developed.
Collapse
Affiliation(s)
- Yao-Bin Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Bag D, Sawant SD. Heteroarene-tethered Functionalized Alkyne Metamorphosis. Chemistry 2021; 27:1165-1218. [PMID: 32603015 DOI: 10.1002/chem.202002154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Heteroarene-tethered functionalized alkynes are multipotent synthons in organic chemistry. This detailed Review described herein offers a thorough discussion of the metamorphosis of heteroarene-tethered functionalized alkynes, an area which has earned much attention over the past decade in the straightforward synthesis of architecturally complex heterocyclic scaffolds in atom and step economic manner. Depending upon the variety of functionalized alkynes, this Review is divided into multiple sections. Amongst the vast array of synthetic transformations covered, dearomatizing spirocyclizations and cascade spirocyclization/rearrangement are of great interest. Synthetic transformations involving the heteroarene-tethered functionalized alkynes with scope, challenges, limitations, mechanism, their application in the total synthesis of natural products and future perceptions are surveyed.
Collapse
Affiliation(s)
- Debojyoti Bag
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Sanghapal D Sawant
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| |
Collapse
|
7
|
Sahoo SR, Sarkar D, Henkel F, Reuter H. Copper(I)-Catalyzed Synthesis of Functionalized Indolizinones from Substituted Pyridine Homologated Ynones. J Org Chem 2020; 85:902-911. [PMID: 31868359 DOI: 10.1021/acs.joc.9b02853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient two-component copper-catalyzed cyclization cascade approach toward highly functionalized indolizinone heterocycles has been developed from reactions of pyridine-, isoquinoline-, and quinoline ynones, via 5-exo-dig cyclization. The catalysis involves the activation by diorgano diselenide and diorgano disulfide and also their incorporation into the indolizinone core. In addition, the obtained substituted indolizinones were readily transformed into 1-(organochalcogenyl)indolizin-2-ols, which are important building blocks in organic synthesis.
Collapse
Affiliation(s)
- Sushree Ranjan Sahoo
- Organic Synthesis and Molecular Engineering Laboratory, Department of Chemistry , National Institute of Technology , Rourkela 769008 , India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory, Department of Chemistry , National Institute of Technology , Rourkela 769008 , India
| | - Felix Henkel
- Institute of Chemistry of New Materials , University of Osnabrück , Barbarastraβe-6 , Osnabrück 49076 , Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials , University of Osnabrück , Barbarastraβe-6 , Osnabrück 49076 , Germany
| |
Collapse
|
8
|
Li Y, Yu J, Bi Y, Yan G, Huang D. Tandem Reactions of Ynones:viaConjugate Addition of Nitrogen‐, Carbon‐, Oxygen‐, Boron‐, Silicon‐, Phosphorus‐, and Sulfur‐Containing Nucleophiles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900611] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Li
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Jian Yu
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Yicheng Bi
- Department of ChemistryQingdao University of Science & Technology Qingdao Shandong People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| |
Collapse
|
9
|
Yang WW, Zhang JW, Chen LL, Fu JY, Zhu JY, Wang YB. Controllable synthesis of 3-iodo-2H-quinolizin-2-ones and 1,3-diiodo-2H-quinolizin-2-onesviaelectrophilic cyclization of azacyclic ynones. Chem Commun (Camb) 2019; 55:12607-12610. [DOI: 10.1039/c9cc06250e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach was developed to divergently synthesize 3-ipdo-2H-quinolizin-2-ones and 1,3-diiodo-2H-quinolizin-2-ones from azacyclic ynones with high regioselectivity under metal-free, room temperature conditions in air.
Collapse
Affiliation(s)
- Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jing-Wen Zhang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Lu-Lu Chen
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Ji-Ya Fu
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jun-Yan Zhu
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|
10
|
Usman M, Zhang XW, Wu D, Guan ZH, Liu WB. Application of dialkyl azodicarboxylate frameworks featuring multi-functional properties. Org Chem Front 2019. [DOI: 10.1039/c9qo00017h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of dialkyl azodicarboxylates as versatile reagents in Mitsunobu, oxidation, electrophilic, amination and carbonylation reactions is reviewed.
Collapse
Affiliation(s)
- Muhammad Usman
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- Shaanxi, China
| | - Xiao-Wen Zhang
- Engineering Research Center of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Di Wu
- Engineering Research Center of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- Shaanxi, China
| | - Wen-Bo Liu
- Engineering Research Center of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| |
Collapse
|