1
|
Wang Z, He Y, Wang F, Wang Y, Luo H, Wu J, Yang J. Green and efficient synthesis of dibenzyl cyanamides and ureas with cyanamide as a block. RSC Adv 2024; 14:23693-23698. [PMID: 39077314 PMCID: PMC11284761 DOI: 10.1039/d4ra04286g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
A method for the two-step synthesis of dibenzyl cyanamide and dibenzyl urea via cyanamide is presented. This approach is both efficient and environmentally friendly. Various N,N-dibenzyl ureas could be obtained by reactions of N,N-dibenzyl cyanamides and N,N-dibenzyl cyanamides as intermediates formed from cyanamide. In the absence of metal, ligand and hydrogen peroxide as the oxidant, products with moderate yields have been obtained under mild conditions. Key features include the use of widely available and easily handled cyanamide sources as starting materials.
Collapse
Affiliation(s)
- Zhongjie Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yu He
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Fang Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yan Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Hui Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jianglong Wu
- School of Chemistry and Chemical Engineering, Ningxia Normal University Guyuan 756000 China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
2
|
Xin H, Yang M, Guan C, Li J, Gao P, Yang X, Duan XH, Guo LN. Iron-Catalyzed Cyanide-Free Synthesis of Alkyl Nitriles: Oxidative Deconstruction of Cycloalkanones with Ammonium Salts and Aerobic Oxidation. Org Lett 2024; 26:2266-2270. [PMID: 38451860 DOI: 10.1021/acs.orglett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A sustainable, cyanide-free synthesis of alkyl nitriles via the aerobic oxidative deconstruction of unstrained cycloalkanones with ammonium salts has been developed. Using inexpensive and stable ammonium salts as the nitrogen source, a variety of alkyl nitriles containing a distal carbonyl group were obtained in good yields under visible-light-promoted iron catalysis. This protocol is characterized by mild conditions, abundant and environmentally benign materials, and high atom and step economy with minimal waste generation. The primary mechanism study revealed that 1O2 is likely to be involved in this reaction.
Collapse
Affiliation(s)
- Hong Xin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyu Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Guan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jialong Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xu Yang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Hang Z, Tong X, Li Z, Wang ZY, Xue W. A practical method for N-cyanation of secondary amines and sulfonamides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Chen Z, Yuan W. N-Cyanation of Primary and Secondary Amines with Cyanobenzio-doxolone (CBX) Reagent. Chemistry 2021; 27:14836-14840. [PMID: 34390036 DOI: 10.1002/chem.202102354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 01/11/2023]
Abstract
An efficient electrophilic N-cyanation of amines with a stable and less-toxic cyanobenziodoxole reagent towards the synthesis of cyanamides is disclosed. This synthetically practicable strategy allows the construction of a wide variety of cyanamides under very mild and simple conditions with a broad functional group compatibility, and showcases a huge potential in late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Zimin Chen
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Weiming Yuan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Duchamp E, Hanessian S. Cyanide-Free Synthesis of Air Stable N-Substituted Li and K Cyanamide Salts from Tetrazoles. Applications toward the Synthesis of Primary and Secondary Cyanamides as Precursors to Amidines. Org Lett 2020; 22:8487-8491. [PMID: 33090802 DOI: 10.1021/acs.orglett.0c03085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A practical two-step synthesis of N,N'-disubstituted cyanamides consists in the low-temperature metalation of N-substituted 5H-tetrazoles that undergo spontaneous cycloreversion at 0 °C releasing dinitrogen, and forming N-metalated cyanamides that can be reacted in situ with a variety of electrophiles. Remarkably, the N-substituted Li and K cyanamides are air stable white solids at room temperature. Addition of lithium organometallics to the N,N'-disubstituted cyanamides provides a new method for accessing N,N'-disubstituted amidines.
Collapse
Affiliation(s)
- Edouard Duchamp
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ., Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ., Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
6
|
Medas KM, Lesch RW, Edioma FB, Wrenn SP, Ndahayo V, Mulcahy SP. Metal-Catalyzed Cyclotrimerization Reactions of Cyanamides: Synthesis of 2-Aryl-α-carbolines. Org Lett 2020; 22:3135-3139. [PMID: 32255636 DOI: 10.1021/acs.orglett.0c00891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis of annulated 2-aryl-α-carboline heterocycles is described using transition metal catalysis. A linear strategy is described that uses Rh(I) catalysis to form the α-carboline scaffold by [2+2+2] cyclotrimerization. Alternatively, a tandem catalytic approach using a Pd(II) precatalyst afforded the same target molecules by mediating a Sonogashira reaction and a [2+2+2] cyclotrimerization in the same reaction flask. In each case, nine different 2-aryl-α-carbolines have been prepared in high to modest isolated yields.
Collapse
Affiliation(s)
- Kyle M Medas
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Robert W Lesch
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Friendship B Edioma
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Sean P Wrenn
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Vincent Ndahayo
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Seann P Mulcahy
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| |
Collapse
|