1
|
Niu W, Liu Y, Dai E, Sun J, Dai Y, Xu X. Synthesis of amide-functionalized isoquinoline derivatives by photo-induced carbamoyl radical cascade amidation/cyclization. Org Biomol Chem 2025. [PMID: 40384331 DOI: 10.1039/d5ob00465a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Isoquinoline-1,3-dione derivatives are of paramount importance in pharmaceutical research due to their versatile bioactivities, including notable anti-tumor and antibacterial properties. This study developed a novel method to synthesize amide-functionalized isoquinoline derivatives by a cascade amidation/cyclization of N-(methacryloyl)benzamide with the carybamonyl radical, generated from oxamic acids with the organic photosensitizer 4CzIPN. Mechanistic investigations, supported by radical scavenger experiments and HRMS analysis, unequivocally established a radical-mediated reaction pathway, with control studies validating the proposed cyclization cascade. This protocol offers distinct advantages including mild reaction conditions, environmental benignity, and broad substrate scope for the synthesis of amide-functionalized isoquinoline-1,3-diones. Furthermore, this synthetic platform has been successfully extended to the synthesis of amide-functionalized oxindoles and succinimides bearing α-quaternary carbon centers, underscoring its broad synthetic utility.
Collapse
Affiliation(s)
- Wei Niu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yanlong Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Erling Dai
- Fuzhou Planning & Design Research Institute Group Co., Ltd, Fuzhou, 361007, P. R. China
| | - Jiarui Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yuyu Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
2
|
Grigolato R, Fantoni T, Autuori G, Lattanzi M, Ferrazzano L, Cabri W, Tolomelli A. Electrochemical oxidative CF 3 radical-induced lactonization and etherification of terminal and internal alkenes. RSC Adv 2025; 15:15302-15309. [PMID: 40352397 PMCID: PMC12063074 DOI: 10.1039/d5ra01852h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
Introducing trifluoromethyl (CF3) groups enhances drug candidates' properties, improving metabolic stability and bioavailability. This study reports the electrochemical oxidation of Langlois' reagent for CF3 radical-promoted cyclization, synthesizing functionalized lactones and cyclic ethers from terminal and internal alkenes with good to high yields. Mechanistic insights were supported by cyclic voltammetry, radical scavenger experiments, and DFT calculations. The protocol's efficiency highlights its potential in medicinal chemistry for developing pharmacologically valuable compounds avoiding the use of rare metal electrodes.
Collapse
Affiliation(s)
- Riccardo Grigolato
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Tommaso Fantoni
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Giuseppe Autuori
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Matteo Lattanzi
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Lucia Ferrazzano
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Walter Cabri
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Alessandra Tolomelli
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| |
Collapse
|
3
|
Tan X, Li Y, Hao Z, Wang J, Liu X, Liu B, Yuan J, Fang L, Zhou PX, Wang Y. Pentafluorosulfanylation of Acrylamides: The Synthesis of SF 5-Containing Isoquinolinediones with SF 5Cl. J Org Chem 2024; 89:15941-15952. [PMID: 39446016 DOI: 10.1021/acs.joc.4c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We disclose herein an efficient and facile method for the synthesis of SF5-containing isoquinolinediones with an all-carbon quaternary stereocenter via intramolecular pentafluorosulfanylation of acrylamides using SF5Cl as a pentafluorosulfanylation reagent. The protocol proceeds under mild reaction conditions and enjoys a broad substrate scope, wide functional group compatibility, and high atom- and step-economy. A radical mechanism involving the SF5 radical cascade addition/cyclization of acrylamides is proposed.
Collapse
Affiliation(s)
- Xinqiang Tan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yuezhen Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Ziyou Hao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xiangqian Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Bingqing Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jianmei Yuan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yingling Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
4
|
Li SD, Xiong BQ, Tang KW, Zhong LJ, Liu Y. Synthesis of Acylation Polycyclic Derivatives via Regioselective Acylation/Cyclization of 1,7-Dienes with Acyl Oxime Esters. J Org Chem 2024; 89:11233-11243. [PMID: 39052929 DOI: 10.1021/acs.joc.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A visible-light-induced radical cascade regioselective acylation/cyclization of 1,7-dienes with acyl oxime esters for the preparation of acylation polycyclic compounds via NCR-mediated C-C σ-bond cleavage is established. The transformation involves the cleavage of the C-C σ-bond in acyl oxime esters and selective addition of the electron neutral C═C bonds in 1,7-dienes for the synthesis of acyl polycyclic quinolinone derivatives, not the traditional seven-membered ring products. The strategy offers several advantages, including broad substrate tolerance, no need for bases, hyperstoichiometric radical initiators, and other auxiliaries.
Collapse
Affiliation(s)
- Shun-Dan Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
5
|
Sui JL, Zhong LJ, Xiong BQ, Tang KW, Liu Y. Regioselective synthesis of N-containing polycyclic compounds via radical annulation cyclization of 1,7-dienes with aldehydes. Chem Commun (Camb) 2024; 60:4834-4837. [PMID: 38619398 DOI: 10.1039/d4cc00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A convenient method for oxidant-promoted radical cascade acylation or decarbonylative alkylation of 1,7-dienes with aldehydes has been established. This method allows for the rapid construction of N-containing polycyclic skeletons in a highly regio- and stereoselective manner. This transformation provides a simple and efficient method for the preparation of a range of tetrahydro-6H-indeno[2,1-c]quinolinone derivatives by sequential formation of three new carbon-carbon bonds. Additionally, this radical cascade cyclization can selectively convert aldehydes into aroyl/primary aliphatic acyl radicals and secondary or tertiary alkyl radicals.
Collapse
Affiliation(s)
- Jia-Li Sui
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
6
|
Li Q, Zhu ZQ, Zhang WY, Le ZG, Xie ZB. Visible-light-induced decarboxylative cascade cyclization of acryloylbenzamides with N-hydroxyphthalimide esters via EDA complexes. Org Biomol Chem 2024; 22:965-969. [PMID: 38205855 DOI: 10.1039/d3ob01970e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A visible-light-induced decarboxylative cascade reaction of acryloylbenzamides with alkyl N-hydroxyphthalimide (NHP) esters for the synthesis of various 4-alkyl isoquinolinediones mediated by triphenylphosphine (PPh3) and sodium iodide (NaI) was developed. This operationally simple protocol proceeded via the photoactivation of electron donor-acceptor (EDA) complexes between N-hydroxyphthalimide esters and NaI/PPh3, resulting in multiple carbon-carbon bond formations without the use of precious metal complexes or synthetically elaborate organic dyes, which provided an alternative practical approach to synthesize diverse isoquinoline-1,3(2H,4H)-dione derivatives.
Collapse
Affiliation(s)
- Qing Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Wen-Yi Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Material Science, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
7
|
Wang WF, Liu T, Cheng YL, Song QH. Visible-light-promoted difluoroamidated oxindole synthesis via electron donor-acceptor complexes. Org Biomol Chem 2024; 22:805-810. [PMID: 38170477 DOI: 10.1039/d3ob01885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Tao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yan-Liang Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
8
|
Zhou X, Wang J, Shen Y, Ma D, Zhao Y, Wu J. Cp 2Fe-Mediated Electrochemical Synthesis of Phosphorylated Oxindoles and Indolo[2,1- a]isoquinolin-6(5 H)-ones. J Org Chem 2023. [PMID: 37990818 DOI: 10.1021/acs.joc.3c02017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
An efficient and environmentally friendly electrochemical synthesis of phosphorylated oxindoles and indolo[2,1-a]isoquinolin-6(5H)-ones mediated by readily available Cp2Fe has been developed, which illustrated a broad substrate scope and diverse functional group compatibility. This protocol featured an external oxidant-free process and was at room temperature, which was proposed to be driven by the anodic oxidation of Cp2Fe.
Collapse
Affiliation(s)
- Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Jian Wang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Yirui Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Dumei Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| |
Collapse
|
9
|
Fang Z, Liu W, Al-Maharik N, Cao R, Huang Y, Yuan Y, Zhang Q, Li D. Silver-Catalyzed Cascade Radical Bicyclization Reaction: An Atom- and Step-Economical Strategy Accessing γ-Lactam Containing Isoquinolinediones. J Org Chem 2023; 88:15428-15436. [PMID: 37864557 DOI: 10.1021/acs.joc.3c01964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
An efficient and convenient method for the cascade radical bicyclization of N-phenyl-4-pentenamides with N-methyl-N-methacryloylbenzamides under silver-catalyzed conditions is described. Based on this newly developed strategy, a variety of valuable γ-lactam containing isoquinolinediones can be effectively synthesized in one step within 0.5 h, during which two C-C bonds, one C-N bond, and two new N-heterocycles were formed concurrently. With N-aryl allyl carbamates, similar 2-oxazolidinone substituted isoquinolinedione compounds can likewise be produced. The approach demonstrates wide functional group compatibility, high step- and atom-economy, and the ability to be scaled up to gram quantities in a satisfactory yield. It marks the first instance of introducing γ-lactams into isoquinoline-1,3(2H,4H)-diones to construct linked hybrid drug-like molecules, thereby making this strategy highly attractive to drug discovery.
Collapse
Affiliation(s)
- Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Wen Liu
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Nawaf Al-Maharik
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Palestine, 00970
| | - Ruizhe Cao
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Yingxue Huang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Yiting Yuan
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Qian Zhang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
10
|
Wu HZ, Teng ZS, Ke YX, Zou Y, Gao P, Li Y, Zhou CH, Zang ZL. Electrochemical trifluoroalkylation/annulation for the synthesis of CF 3-functionalized tetrahydroquinolines and dihydroquinolinones. Org Biomol Chem 2023; 21:8579-8583. [PMID: 37853839 DOI: 10.1039/d3ob00987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Tuning the electronic structure of protecting groups on the nitrogen atom of substrates has emerged as an effective strategy to achieve the tandem trifluoromethylation/C(sp2)-H annulation using Langlois' reagent as the CF3 source for the electrochemical synthesis of functionalized tetrahydroquinolines and dihydroquinolinones.
Collapse
Affiliation(s)
- Hao-Zeng Wu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Shan Teng
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu-Xin Ke
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu Zou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ping Gao
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yue Li
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
11
|
Zhang C, Yu Z, Ding Y, Shi Y, Xie Y. Metal-free electrochemistry promoted radical cascade cyclization to access CF 3-containing benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2023; 21:6715-6718. [PMID: 37462425 DOI: 10.1039/d3ob00854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Using CF3SO2Na as the CF3 radical source, an eco-friendly approach for electrochemistry-mediated radical cascade cyclization of N-methacryloyl-2-phenylbenzoimidazoles was described. This reaction features mild reaction conditions, readily available substrates, and moderate to good yields through the construction of two C-C bonds in one step.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhichen Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuxin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
12
|
Sunbal, Alamzeb M, Omer M, Abid OUR, Ullah M, Sohail M, Ullah I. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles-a transition metal-catalyzed approach. Front Chem 2023; 11:1185669. [PMID: 37564110 PMCID: PMC10411457 DOI: 10.3389/fchem.2023.1185669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Drug design and delivery is primarily based on the hunt for new potent drug candidates and novel synthetic techniques. Recently, saturated heterocycles have gained enormous attention in medicinal chemistry as evidenced by the medicinal drugs listed in the FDA Orange Book. Therefore, the demand for novel saturated heterocyclic syntheses has increased tremendously. Transition metal (TM)-catalyzed reactions have remained the prime priority in heterocyclic syntheses for the last three decades. Nowadays, TM catalysis is well adorned by combining it with other techniques such as bio- and/or enzyme-catalyzed reactions, organocatalysis, or using two different metals in a single catalysis. This review highlights the recent developments of the transition metal-catalyzed synthesis of five-membered saturated heterocycles.
Collapse
Affiliation(s)
- Sunbal
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
13
|
Firuz ME, Rajai-Daryasarei S, Rominger F, Biglari A, Balalaie S. Mn-Mediated Direct Regioselective C-H Trifluoromethylation of Imidazopyridines and Quinoxalines. J Org Chem 2023. [PMID: 37471701 DOI: 10.1021/acs.joc.3c00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A simple and highly efficient strategy has been developed for direct C-H trifluoromethylation at C-3 of imidazopyridines and C-8 of quinoxalines with readily available Langlois reagent through KMnO4/AcOH system. This protocol showed broad substrate scope and afforded moderate-to-excellent yields of both products. It is the first report that the functionalization of quinoxalines occurred regioselectively at the C-8 position of quinoxalines. Mechanistic studies revealed that reaction proceeded via radical pathway.
Collapse
Affiliation(s)
- Mahdieh Esi Firuz
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, Heidelberg 69120, Germany
| | - Abbas Biglari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran 19697-64499, Iran
| |
Collapse
|
14
|
Zhang D, Chang W, Li Y, Zhan S, Pan J, Cai S, Li N, Yang X, Fang Z. The preparation of difluoromethylated indoles via electrochemical oxidation under catalyst- and oxidant-free conditions. Org Biomol Chem 2023; 21:4440-4444. [PMID: 37183760 DOI: 10.1039/d3ob00516j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A green and efficient electrochemical method for the preparation of difluoromethylated indoles has been developed. In this work, sodium difluoromethanesulfinate (HCF2SO2Na) was used as the fluorinating reagent, and various indole derivatives with difluoromethylation at the C-2 position were obtained in moderate to good yields under catalyst- and oxidant-free conditions. Moreover, this C-2 difluoromethylation protocol is operationally simple, proceeds at room temperature, and can be easily scaled up. Cyclic voltammetry (CV) and control experiments indicated that this transformation may proceed via a radical pathway.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Wenqiao Chang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Yun Li
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Songying Zhan
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Junjie Pan
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Shunhui Cai
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Na Li
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Xiaoqin Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Abstract
We have developed an electrochemical method for the direct C-H sulfonylation of aldehyde hydrazones using sodium sufinates as the sulfonylating agent under supporting electrolyte-free conditions. This straightforward sulfonylation strategy afforded a library of (E)-sufonylated hydrazones with high tolerance of various functional groups. The radical pathway of this reaction has been revealed by the mechanistic studies.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
16
|
Luan S, Castanheiro T, Poisson T. Electrochemical Difluoromethylation of Electron-Rich Olefins. Org Lett 2023; 25:1678-1682. [PMID: 36867562 DOI: 10.1021/acs.orglett.3c00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The electrochemical difluoromethylation of electron-rich olefins (enamides and styrene derivatives) is disclosed. The addition of the electrogenerated difluoromethyl radical from the corresponding sodium sulfinate (i.e., HCF2SO2Na) to enamides and styrenes in an undivided cell allowed the formation of a large panel of difluoromethylated building blocks in good to excellent yields (42 examples, 23-87% yields). A plausible unified mechanism was suggested according to control experiments and cyclic voltammetry measurements.
Collapse
Affiliation(s)
- Shinan Luan
- Normandy Univ. INSA Rouen Normandy, UNIROUEN, CNRS COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Castanheiro
- Normandy Univ. INSA Rouen Normandy, UNIROUEN, CNRS COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Poisson
- Normandy Univ. INSA Rouen Normandy, UNIROUEN, CNRS COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
17
|
Shen J, Li L, Xu J, Shen C, Zhang P. Recent advances in the application of Langlois' reagent in olefin difunctionalization. Org Biomol Chem 2023; 21:2046-2058. [PMID: 36448510 DOI: 10.1039/d2ob01875f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we summarise the recent applications of Langlois' reagent in the radical-mediated difunctionalization of alkenes. Among the various trifluoromethylation reagents, Langlois' reagent is an exceptional compound, and many important organic transformations have been realized by employing such reagents. Various organic transformations of Langlois' reagent, especially in radical chemistry, have been developed in recent years. This review describes several key activation methods for Langlois' reagent in the difunctionalization of alkenes by showcasing selected cornerstone research areas and related mechanisms to stimulate the interest of readers in promoting the wider development and application of Langlois' reagent.
Collapse
Affiliation(s)
- Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
18
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
19
|
Tian Y, Zheng L, Wang Z, Li Z, Fu W. Metal-Free Electrochemical Oxidative Difluoroethylation/Cyclization of Olefinic Amides To Construct Difluoroethylated Azaheterocycles. J Org Chem 2023; 88:1875-1883. [PMID: 36669162 DOI: 10.1021/acs.joc.2c02579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new strategy of electrochemical oxidative difluoroethylation to generate difluoroethyl radical with sodium difluoroethylsulfinate (DFES-Na) has been reported for the first time. The method allows quick access to a variety of valuable difluoroethylated azaheterocycles including oxindoles and isoquinoline-1,3-diones via radical tandem difluoroethylation/cyclization in moderate to good yields. The electrochemical cyclopropyldifluoromethylation of N-arylacrylamides also works well using this strategy. Moreover, radical capture and cyclic voltammetry (CV) experiments are also carried out to determine the proposed mechanism.
Collapse
Affiliation(s)
- Yunfei Tian
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Luping Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| |
Collapse
|
20
|
Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
21
|
Lv Y, Hou ZW, Wang Y, Li P, Wang L. Electrochemical monofluoroalkylation cyclization of N-arylacrylamides to construct monofluorinated 2-oxindoles. Org Biomol Chem 2023; 21:1014-1020. [PMID: 36602181 DOI: 10.1039/d2ob01883g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical monofluoroalkylation cyclization of N-arylacrylamides to synthesize monofluorinated 2-oxindoles has been developed, which employs common dimethyl 2-fluoromalonate as a monofluoroalkyl radical precursor and obviates the use of prefunctionalized monofluoroalkylation reagents and sacrificial oxidants. A variety of monofluorinated nitrogen-containing heterocyclic compounds were efficiently obtained with satisfactory yields from readily available materials.
Collapse
Affiliation(s)
- Yanxia Lv
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China.
| | - Yi Wang
- The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| |
Collapse
|
22
|
Lodh J, Paul S, Sun H, Song L, Schöfberger W, Roy S. Electrochemical organic reactions: A tutorial review. Front Chem 2023; 10:956502. [PMID: 36704620 PMCID: PMC9871948 DOI: 10.3389/fchem.2022.956502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.
Collapse
Affiliation(s)
- Joyeeta Lodh
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - He Sun
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Luyang Song
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| |
Collapse
|
23
|
Shi Y, Wang K, Ding Y, Xie Y. Transition-metal-free electrochemical oxidative C(sp 2)-H trifluoromethylation of aryl aldehyde hydrazones. Org Biomol Chem 2022; 20:9362-9367. [PMID: 36383151 DOI: 10.1039/d2ob01734b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A simple protocol of metal-free C-H trifluoromethylation of hydrazones via electrolysis was developed. This environment-friendly transformation showed high efficiency, good tolerance, and scaled-up functionalization, providing the desired products in moderate to good yields. At the same time, a high yield can be obtained for the substrates either bearing an electron-donating group or an electron-withdrawing group by using different trifluoromethyl reagents. In addition, the radical mechanism was confirmed by the control experiment.
Collapse
Affiliation(s)
- Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Kai Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuxin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China. .,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
24
|
Zhang J, Das B, Verho O, Bäckvall J. Electrochemical Palladium‐Catalyzed Oxidative Carbonylation‐Cyclization of Enallenols. Angew Chem Int Ed Engl 2022; 61:e202212131. [PMID: 36222322 PMCID: PMC10098644 DOI: 10.1002/anie.202212131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report an electrochemical oxidative palladium-catalyzed carbonylation-carbocyclization of enallenols to afford γ-lactones and spirolactones, which proceeds with excellent chemoselectivity. Interestingly, electrocatalysis was found to have an accelerating effect on the rate of the tandem process, leading to a more efficient reaction than that under chemical redox conditions.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Oscar Verho
- Department of Medicinal Chemistry Uppsala Biomedical Center, BMC Uppsala University 75236 Uppsala Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
25
|
Niu YN, Xia XF. Recent developments in the synthesis of the isoquinoline-1,3(2 H,4 H)-dione by radical cascade reaction. Org Biomol Chem 2022; 20:7861-7885. [PMID: 36185038 DOI: 10.1039/d2ob01554d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, isoquinoline-1,3(2H,4H)-dione compounds have attracted extensive attention from synthetic chemists, with the aim of finding simple, mild, green and efficient synthetic methods. In this review, we summarize the diverse range of synthetic methods employing acryloyl benzamides as key substrates to furnish isoquinoline-1,3-diones using different radical precursors, such as those containing carbon, sulphur, phosphorus, nitrogen, silicon and bromine. This will stimulate the interest of readers to engage in research in this field.
Collapse
Affiliation(s)
- Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian, Jiangsu, 223003, People's Republic of China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
26
|
Lu P, Zhuang W, Lu L, Liu A, Chen Y, Wu C, Zhang X, Huang Q. Chemodivergent Synthesis of Indeno[1,2- b]indoles and Isoindolo[2,1- a]indoles via Mn(III)-Mediated or Electrochemical Intramolecular Radical Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:10967-10981. [PMID: 35901234 DOI: 10.1021/acs.joc.2c01238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chemodivergent synthesis of indeno[1,2-b]indoles and isoindolo[2,1-a]indoles from the same starting materials involving radical cross-dehydrogenative couplings have been developed. Mn(OAc)3·2H2O selectively promoted an intramolecular radical C-H/C-H dehydrogenative coupling reaction to provide indeno[1,2-b]indoles, while an intramolecular radical C-H/N-H dehydrogenative coupling reaction could proceed via electrochemistry to deliver isoindolo[2,1-a]indoles. Plausible mechanisms of the chemodivergent reactions were proposed.
Collapse
Affiliation(s)
- Piao Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Leipeng Lu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Anyi Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Yixi Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Chenmeng Wu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China
| |
Collapse
|
27
|
Cheng F, Bai X, Sun QW, Zhu GF, Dong YX, Yang YY, Gao XL, Guo B, Tang L, Zhang JQ. Cobalt-promoted synthesis of sulfurated oxindoles via radical annulation of N-arylacrylamides with disulfides. Org Biomol Chem 2022; 20:6423-6431. [PMID: 35880643 DOI: 10.1039/d2ob00877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient radical annulation of N-arylacrylamides with disulfides is developed for the synthesis of sulfurated oxindoles. The reaction occurs in a facile manner using CoBr2 as both an initiator and a promoter for the first time and (NH4)2S2O8 as the oxidant. By controlling the CoBr2/(NH4)2S2O8 ratio, a wide range of sulfurated and brominated/sulfurated oxindoles are selectively prepared in good to excellent yields. The present protocol is simple and highly atom economical, and can tolerate a broad range of substrates.
Collapse
Affiliation(s)
- Fei Cheng
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Xue Bai
- Pharmacy Department of Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Qi-Wen Sun
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Gao-Feng Zhu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Yong-Xi Dong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Yuan-Yong Yang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiu-Li Gao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| | - Ji-Quan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
28
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
29
|
Mo K, Zhou X, Wu J, Zhao Y. Electrochemical Dearomatization of Indoles: Access to Diversified Fluorine-Containing Spirocyclic Indolines. Org Lett 2022; 24:2788-2792. [DOI: 10.1021/acs.orglett.2c00530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangdong Mo
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 315211 Ningbo, Zhejiang, China
| |
Collapse
|
30
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
31
|
Du J, Gao D, Zhang D, Lin X, Liu C, Zhu N, Yang Z, He W, Fang Z, Guo K. Electrochemical Oxidative
ortho
‐Selective Trifluoromethylation of
N
‐Arylamides. ChemElectroChem 2022. [DOI: 10.1002/celc.202101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zhao Yang
- College of Engineering China Pharmaceutical University 24 Tongjiaxiang Nanjing 210003 P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| |
Collapse
|
32
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
33
|
Zhang D, Cai J, Du J, Wang Q, Yang J, Geng R, Fang Z, Guo K. Electrochemical-Oxidation-Promoted Direct N-ortho-Selective Difluoromethylation of Heterocyclic N-Oxides. Org Lett 2022; 24:1434-1438. [PMID: 35166558 DOI: 10.1021/acs.orglett.1c04241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and green electrochemical N-ortho-selective difluoromethylation method of various quinoline and isoquinoline N-oxides has been developed. In this method, sodium difluoromethanesulfinate (HCF2SO2Na) was used as the source of the difluoromethyl moiety, and various N-ortho-selective difluoromethylation quinoline and isoquinoline N-oxides were obtained in good to excellent yields under a constant current. In addition, the reaction was easy to scale up and maintained a good yield. Preliminary mechanism studies suggested that the reaction undergoes a free-radical addition and hydrogen elimination pathway.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinlin Cai
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Qingdong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
34
|
Mandal D, Maji S, Pal T, Sinha SK, Maiti D. Recent Advances in Transition-Metal Mediated Trifluoromethylation Reactions. Chem Commun (Camb) 2022; 58:10442-10468. [DOI: 10.1039/d2cc04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine compounds are known for their abundance in more than 20% of pharmaceutical and agrochemical products mainly due to the enhanced lipophilicity, metabolic stability and pharmacokinetic properties of organofluorides. Consequently,...
Collapse
|
35
|
Li X, Tao P, Cheng Y, Hu Q, Huang W, Li Y, Luo Z, Huang G. Recent Progress on the Electrochemical Difunctionalization of Alkenes/Alkynes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Chen N, Lei J, Wang Z, Liu Y, Sun K, Tang S. Construction of Fluoro-containing Heterocycles Mediated by Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Wang H, Xie Y, Zhou Y, Cen N, Chen W. Catalyst-free, direct electrochemical trifluoromethylation/cyclization of N-arylacrylamides using TfNHNHBoc as a CF3 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Yan ZH, Li WC, Wu YH, Yan QB, Wei ZL, Liao WW. Electrochemical cyclization of N-cyanamide alkenes with CF 3SO 2Na to access C, N-(bis)trifluoromethylated cyclic amidines and related compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical trifluoromethylative cyclization of N-cyanamide alkenes and alkynes is presented, which afforded (bis)-C,N-trifluoromethylated cyclic amidines, azines and amides with selective multiple bond formations in a controllable manner.
Collapse
Affiliation(s)
- Zhi-Hua Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen-Cheng Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu-Heng Wu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qi-Bo Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
39
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
40
|
Kaboudin B, Ghashghaee M, Bigdeli A, Farkhondeh A, Eskandari M, Esfandiari H. Recent Advances on the Application of Langlois’ Reagent in Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202103867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mojtaba Ghashghaee
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Akram Bigdeli
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Amir Farkhondeh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mahboobe Eskandari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Hesam Esfandiari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|
41
|
Liu M, Luo ZX, Li T, Xiong DC, Ye XS. Electrochemical Trifluoromethylation of Glycals. J Org Chem 2021; 86:16187-16194. [PMID: 34435785 DOI: 10.1021/acs.joc.1c01318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrates play essential roles in various physiological and pathological processes. Trifluoromethylated compounds have wide applications in the field of medicinal chemistry. Herein, we report a practical and efficient trifluoromethylation of glycals by an electrochemical approach using CF3SO2Na as the trifluoromethyl source and MnBr2 as the redox mediator. A variety of trifluoromethylated glycals bearing different protective groups are obtained in 60-90% yields with high regioselectivity. The successful capture of a CF3 radical indicates that a radical mechanism is involved in this reaction.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
42
|
Ma C, Fang P, Liu D, Jiao KJ, Gao PS, Qiu H, Mei TS. Transition metal-catalyzed organic reactions in undivided electrochemical cells. Chem Sci 2021; 12:12866-12873. [PMID: 34745519 PMCID: PMC8514006 DOI: 10.1039/d1sc04011a] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Transition metal-catalyzed organic electrochemistry is a rapidly growing research area owing in part to the ability of metal catalysts to alter the selectivity of a given transformation. This conversion mainly focuses on transition metal-catalyzed anodic oxidation and cathodic reduction and great progress has been achieved in both areas. Typically, only one of the half-cell reactions is involved in the organic reaction while a sacrificial reaction occurs at the counter electrode, which is inherently wasteful since one electrode is not being used productively. Recently, transition metal-catalyzed paired electrolysis that makes use of both anodic oxidation and cathodic reduction has attracted much attention. This perspective highlights the recent progress of each type of electrochemical reaction and relatively focuses on the transition metal-catalyzed paired electrolysis, showcasing that electrochemical reactions involving transition metal catalysis have advantages over conventional reactions in terms of controlling the reaction activity and selectivity and figuring out that transition metal-catalyzed paired electrolysis is an important direction of organic electrochemistry in the future and offers numerous opportunities for new and improved organic reaction methods.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pei-Sen Gao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hui Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
43
|
Guo Y, Wang R, Song H, Liu Y, Wang Q. Electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. Chem Commun (Camb) 2021; 57:8284-8287. [PMID: 34328164 DOI: 10.1039/d1cc03389a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a protocol for electrochemical cathode reduction to generate trifluoromethyl radicals. The trifluoromethylation reagent (IMDN-SO2CF3) used in this strategy is inexpensive and easy to obtain, and the reaction can be conducted efficiently without the addition of additional redox reagents. Using this strategy, we achieved electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. This protocol has good functional group tolerance and a broad substrate scope.
Collapse
Affiliation(s)
- Yuanqiang Guo
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | | | |
Collapse
|
44
|
Zhang Y, Ma C, Struwe J, Feng J, Zhu G, Ackermann L. Electrooxidative dearomatization of biaryls: synthesis of tri- and difluoromethylated spiro[5.5]trienones. Chem Sci 2021; 12:10092-10096. [PMID: 34377402 PMCID: PMC8317667 DOI: 10.1039/d1sc02682h] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Radical spirocyclization via dearomatization has emerged as an attractive strategy for the rapid synthesis of structurally diverse spiro molecules. We report the use of electrochemistry to perform an oxidative dearomatization of biaryls leading to tri- and difluoromethylated spiro[5.5]trienones in a user friendly undivided cell set-up and a constant current mode. The catalyst- and chemical oxidant-free dearomatization procedure features ample scope, and employs electricity as the green and sole oxidant.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Chanchan Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| | - Jian Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| |
Collapse
|
45
|
Yuan Y, Zhou Z, Zhang L, Li LS, Lei A. Electrochemical Oxidative C3 Acyloxylation of Imidazo[1,2- a]pyridines with Hydrogen Evolution. Org Lett 2021; 23:5932-5936. [PMID: 34296890 DOI: 10.1021/acs.orglett.1c02032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The C3-functionalized imidazo[1,2-a]pyridines are versatile nitrogen-fused heterocycles; however, the methods for the C3 acyloxylation of imidazo[1,2-a]pyridines have never been reported. Herein we demonstrate the electrochemical oxidative C3 acyloxylation of imidazo[1,2-a]pyridines for the first time. Notably, by using electricity, the electrochemical oxidative C3 acyloxylation of imidazo[1,2-a]pyridines was carried out under mild conditions. Moreover, in addition to aromatic carboxylic acids, alkyl carboxylic acids were also competent substrates.
Collapse
Affiliation(s)
- Yong Yuan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zhilin Zhou
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lin Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Liang-Sen Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
46
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Kisukuri CM, Fernandes VA, Delgado JAC, Häring AP, Paixão MW, Waldvogel SR. Electrochemical Installation of CFH 2 -, CF 2 H-, CF 3 -, and Perfluoroalkyl Groups into Small Organic Molecules. CHEM REC 2021; 21:2502-2525. [PMID: 34151507 DOI: 10.1002/tcr.202100065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis can be considered a powerful and sustainable methodology for the synthesis of small organic molecules. Due to its intrinsic ability to generate highly reactive species under mild conditions by anodic oxidation or cathodic reduction, electrosynthesis is particularly interesting for otherwise challenging transformations. One such challenge is the installation of fluorinated alkyl groups, which has gained significant attention in medicinal chemistry and material science due to their unique physicochemical features. Unsurprisingly, several electrochemical fluoroalkylation methods have been established. In this review, we survey recent developments and established methods in the field of electrochemical mono-, di-, and trifluoromethylation, and perfluoroalkylation of small organic molecules.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Vitor A Fernandes
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - José A C Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Márcio W Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
48
|
Kong R, Fu T, Yang R, Chen D, Liang D, Dong Y, Li W, Wang B. 4‐Nitroanisole Facilitates Proton Reduction: Visible Light‐Induced Oxidative Aryltrifluoromethylation of Alkenes with Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rui Kong
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Tingfeng Fu
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ruihan Yang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Danna Chen
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ying Dong
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong Province 250014 P. R. China
| | - Weili Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| |
Collapse
|
49
|
Maiti D, Mahanty K, De Sarkar S. Manganese-catalyzed Electro-oxidative Azidation-annulation Cascade to Access Oxindoles and Quinolinones. Chem Asian J 2021; 16:748-752. [PMID: 33636034 DOI: 10.1002/asia.202100121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Indexed: 12/30/2022]
Abstract
An environmentally benign and proficient electro-oxidative tandem azidation-radical cyclization strategy is reported. Manganese-catalyzed electrochemical reaction in an undivided cell at room temperature and the use of NaN3 as the cheapest azide source are the key features of this protocol. Using this approach, a series of oxindole and quinolinone derivatives are synthesized in high yields. The synthesized azide functionality was efficiently converted to various valuable derivatives.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Kingshuk Mahanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
50
|
Yuan X, Cui Y, Zhang X, Qin L, Sun Q, Duan X, Chen L, Li G, Qiu J, Guo K. Electrochemical Tri‐ and Difluoromethylation‐Triggered Cyclization Accompanied by the Oxidative Cleavage of Indole Derivatives. Chemistry 2021; 27:6522-6528. [DOI: 10.1002/chem.202005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Guigen Li
- Institute of Chemistry & Biomedical Science Nanjing University No.163, Xianlin Avenue, Qixia District Nanjing 210093 P. R. China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409-1061 USA
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| |
Collapse
|