1
|
Betinol IO, Kuang Y, Mulley BP, Reid JP. Controlling Stereoselectivity with Noncovalent Interactions in Chiral Phosphoric Acid Organocatalysis. Chem Rev 2025; 125:4184-4286. [PMID: 40101184 DOI: 10.1021/acs.chemrev.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chiral phosphoric acids (CPAs) have emerged as highly effective Brønsted acid catalysts in an expanding range of asymmetric transformations, often through novel multifunctional substrate activation modes. Versatile and broadly appealing, these catalysts benefit from modular and tunable structures, and compatibility with additives. Given the unique types of noncovalent interactions (NCIs) that can be established between CPAs and various reactants─such as hydrogen bonding, aromatic interactions, and van der Waals forces─it is unsurprising that these catalyst systems have become a promising approach for accessing diverse chiral product outcomes. This review aims to provide an in-depth exploration of the mechanisms by which CPAs impart stereoselectivity, positioning NCIs as the central feature that connects a broad spectrum of catalytic reactions. Spanning literature from 2004 to 2024, it covers nucleophilic additions, radical transformations, and atroposelective bond formations, highlighting the applicability of CPA organocatalysis. Special emphasis is placed on the structural and mechanistic features that govern CPA-substrate interactions, as well as the tools and techniques developed to enhance our understanding of their catalytic behavior. In addition to emphasizing mechanistic details and stereocontrolling elements in individual reactions, we have carefully structured this review to provide a natural progression from these specifics to a broader, class-level perspective. Overall, these findings underscore the critical role of NCIs in CPA catalysis and their significant contributions to advancing asymmetric synthesis.
Collapse
Affiliation(s)
- Isaiah O Betinol
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian P Mulley
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Chaudhary D, Maurya CS, Unnikrishnan U, Kuram MR. HFIP-mediated cascade aminomethylation and intramolecular cyclization of allenamides with N, O-acetals to access tetrahydro-β-carboline derivatives. Chem Commun (Camb) 2025; 61:2981-2984. [PMID: 39846458 DOI: 10.1039/d5cc00154d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The construction of complex molecules under metal-free conditions via multiple bond-forming steps in a cascade manner is highly desirable. Herein, we have developed an HFIP-alone promoted aminomethylation and intramolecular cyclization of allenamides, providing biologically relevant tetrahydro-β-carboline derivatives embedded with an allylic amine functionality. The metal-free protocol provided the desired tetrahydro-β-carboline derivatives under mild conditions. The potential of the protocol is further highlighted by the gram-scale reaction and synthesizing derivatives of biologically important molecules.
Collapse
Affiliation(s)
- Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Chandra Shekhar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Urmila Unnikrishnan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Khajuria C, Sadhu MM, Unhale RA, Singh VK. Chiral phosphoric acid-catalyzed reaction between C-alkynyl imine precursor and thiol: Access to highly enantioenriched alkynyl isoindolinones with N,S-ketal framework. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
5
|
Xie X, Bao M, Chen KW, Xu X, Hu W. Asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine. Org Chem Front 2022. [DOI: 10.1039/d2qo00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dirhodium and chiral phosphoric acid co-catalyzed asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine has been developed via Mannich-type interception of transient oxonium ylide. This reaction...
Collapse
|
6
|
Cui X, Zhou F, Wu H, Zhou J. Asymmetric Tandem Reactions Achieved by Chiral Amine & Gold(I) Cooperative Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Enantioselective formal carbene insertion into C–N bond of aminal as a concise track to chiral α-amino-β2,2-amino acids and synthetic applications. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Zhang CC, Chen LJ, Shen BC, Xie HD, Li W, Sun ZW. Enantioselective decarboxylative Mannich reaction of β-keto acids with C-alkynyl N-Boc N, O-acetals: access to chiral β-keto propargylamines. Org Biomol Chem 2021; 19:8607-8612. [PMID: 34569587 DOI: 10.1039/d1ob01555a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chiral keto-substituted propargylamines are an essential class of multifunctional compounds in the field of organic and pharmaceutical synthesis and have attracted considerable attention, but the related synthetic approaches remain limited. Therefore, a concise and efficient method for the enantioselective synthesis of β-keto propargylamines via chiral phosphoric acid-catalyzed asymmetric Mannich reaction between β-keto acids and C-alkynyl N-Boc N,O-acetals as easily available C-alkynyl imine precursors has been demonstrated here, affording a broad scope of β-keto N-Boc-propargylamines in high yields (up to 97%) with generally high enantioselectivities (up to 97 : 3 er).
Collapse
Affiliation(s)
- Cong-Cong Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Li-Jun Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Bao-Chun Shen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Hui-Ding Xie
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Wei Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Zhong-Wen Sun
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China. .,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan University, Kunming, 650091, China
| |
Collapse
|
9
|
Yuan H, Hong K, Liu X, Qian Y, Xu X, Hu W. Enantioselective assembly of 3,3-disubstituted succinimides via three-component reaction of vinyl diazosuccinimides with alcohols and imines. Chem Commun (Camb) 2021; 57:8043-8046. [PMID: 34291251 DOI: 10.1039/d1cc02876f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enantioselective three-component reaction of vinyl diazosuccinimdes with alcohols and imines has been realized by a cooperative catalysis of Rh2(OAc)4 and a chiral phosphoric acid, leading to chiral 3,3-disubstituted succinimides in good to high yields with high to excellent enantioselectivity. The generated product with an alkenyl species could be converted to the chiral tricyclic structure under mild conditions.
Collapse
Affiliation(s)
- Haoxuan Yuan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xiangrong Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Synergistic Dinuclear Rhodium Induced Rhodium-Walking Enabling Alkene Terminal Arylation: A Theoretical Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Zhang L, An K, Wang Y, Wu YD, Zhang X, Yu ZX, He W. A Combined Computational and Experimental Study of Rh-Catalyzed C-H Silylation with Silacyclobutanes: Insights Leading to a More Efficient Catalyst System. J Am Chem Soc 2021; 143:3571-3582. [PMID: 33621095 DOI: 10.1021/jacs.0c13335] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The study of new C-H silylation reagents and reactions remains an important topic. We reported that under Rh catalysis, silacyclobutanes (SCBs) for the first time were able to react with C(sp2)-H and C(sp3)-H bonds, however the underlying reasons for such a new reactivity were not understood. Through this combined computational and experimental study on C-H silylation with SCBs, we not only depict a reaction pathway that fully accounts for the reactivity and all the experimental findings but also streamline a more efficient catalyst that significantly improves the reaction rates and yields. Our key findings include: (1) the active catalytic species is a [Rh]-H as opposed to the previously proposed [Rh]-Cl; (2) the [Rh]-H is generated via a reductive elimination/β-hydride (β-H) elimination sequence, as opposed to previously proposed endocyclic β-H elimination; (3) the regio- and enantio-determining steps are identified; (4) and of the same importance, the discretely synthesized [Rh]-H is shown to be a more efficient catalyst. This work suggests that the [Rh]-H/diphosphine system should find further applications in C-H silylations involving SCBs.
Collapse
Affiliation(s)
- Linxing Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kun An
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology and School of Pharmaceutical Sciences and Tsinghua-Peking Joint Centers for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xinhao Zhang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Wei He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology and School of Pharmaceutical Sciences and Tsinghua-Peking Joint Centers for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Wang Y, Cobo AA, Franz AK. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00220a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalytic asymmetric MCCRs for enantioselective synthesis of spirooxindoles by using chiral phosphoric acids, amines, bifunctional thiourea/squaramides and metal-based reagents as catalysts.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education
- Yunnan Normal University
- Kunming 650092
- P. R. China
| | - Angel A. Cobo
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
13
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
14
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020; 59:18964-18969. [DOI: 10.1002/anie.202007068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
15
|
Wang MX, Liu J, Liu Z, Wang Y, Yang QQ, Shan W, Deng YH, Shao Z. Enantioselective synthesis of chiral α-alkynylated thiazolidones by tandem S-addition/acetalization of alkynyl imines. Org Biomol Chem 2020; 18:3117-3124. [PMID: 32253417 DOI: 10.1039/d0ob00365d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A SPINOL-derived chiral phosphoric acid catalyzed asymmetric formal [2 + 3]-annulation of in situ generated alkynyl imines and 1,4-dithiane-2,5-diol has been developed to afford enantiopure α-alkynylated thiazolidones with up to 72% yield and 98.5 : 1.5 er. This tandem annulation involved a tandem S-addition of alkynyl imines/intramolecular acetalization, followed by PDC-mediated oxidation. The α-alkynylated thiazolidones could facilely afford the corresponding chiral α-alkynylated or α-alkenylated cyclic sulfoxides via further elaboration.
Collapse
Affiliation(s)
- Mei-Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Juan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China. and Yunnan Baiyao Group CO., Ltd, Kunming, 650500, China
| | - Zhen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qi-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
16
|
Zhang W, Zhang S, Li B. Highly Enantioselective Synthesis of Propargyl Amide with Vicinal Stereocenters through Ir‐Catalyzed Hydroalkynylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Wen Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Su‐Lei Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
17
|
Feng S, Yang B, Chen T, Wang R, Deng YH, Shao Z. Catalytic Asymmetric [4 + 2] Cycloaddition of ortho-Alkenyl Naphthols/Phenols with ortho-Quinone Methides: Highly Stereoselective Synthesis of Chiral 2,3,4-Trisubstituted Chromans. J Org Chem 2020; 85:5231-5244. [PMID: 32186180 DOI: 10.1021/acs.joc.9b03302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chiral phosphoric acid-catalyzed biomimetic asymmetric [4 + 2] cycloaddition of ortho-alkenyl naphthols/phenols and ortho-quinone methides (o-QMs) has been demonstrated to afford various important 2,3,4-trisubstituted chromans in high yields with excellent enantio- and diastereoselectivities (up to 99% yield, 99% ee, >20:1 dr). Notably, this methodology not only enabled access to the trans-cis chiral trisubstituted chromans from 1-alkenyl 2-naphthols but also is compatible with 2-alkenyl 1-naphthols and phenols to deliver trans-trans chiral trisubstituted chromans.
Collapse
Affiliation(s)
- Shubo Feng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Binmiao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Tao Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ran Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
18
|
Liu X, Xiao G, Xu X, Kang Z, Zhang D, Hu W. A Cleavage‐Modification‐Reassembly Process Catalyzed by Rhodium and Brønsted Acid for the Synthesis of Multi‐Substituted Anilines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiangrong Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 People's Republic of China
| | - Guolan Xiao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 People's Republic of China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 People's Republic of China
| | - Zhenghui Kang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 People's Republic of China
| | - Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 People's Republic of China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical SciencesSun Yat-Sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
19
|
Zou S, Zhang T, Wang S, Huang H. Iron‐Catalyzed Aminomethyloxygenative Cyclization of Hydroxy‐α‐diazoesters with
N,O
‐Aminals. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Suchen Zou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
| | - Tianze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
| | - Siyuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences Hefei Anhui 230026 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
20
|
Zhang W, Zhang S, Li B. Highly Enantioselective Synthesis of Propargyl Amide with Vicinal Stereocenters through Ir‐Catalyzed Hydroalkynylation. Angew Chem Int Ed Engl 2020; 59:6874-6880. [DOI: 10.1002/anie.201916088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wen‐Wen Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Su‐Lei Zhang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
21
|
Luo K, Mao S, He K, Yu X, Pan J, Lin J, Shao Z, Jin Y. Highly Regioselective Synthesis of Multisubstituted Pyrroles via Ag-Catalyzed [4+1C]insert Cascade. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05360] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kaixiu Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Kun He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xianglin Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Junhong Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jun Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yi Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Medicinal for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
22
|
Wang Y, Wang S, Shan W, Shao Z. Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate. Nat Commun 2020; 11:226. [PMID: 31932668 PMCID: PMC6957506 DOI: 10.1038/s41467-019-13886-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/05/2019] [Indexed: 02/02/2023] Open
Abstract
Catalytic asymmetric functionalization of the N–H groups of indoles and carbazoles constitutes an important but less developed class of reactions. Herein, we describe a propargylation protocol involving the use of a lithium SPINOL phosphate as the chiral catalyst and our recently developed C-alkynyl N,O-acetals as propargylating reagents. The direct asymmetric N-propargylation of indoles and carbazoles provides hitherto inaccessible N-functionalized products. Notably, the efficiency of the system allows reactions to be run at a very low catalyst loading (as low as 0.1 mol%). Mechanistic information about the titled reaction is also disclosed. This study represents an advance in the direct asymmetric functionalization of the N–H bonds of indoles and carbazoles, and additionally expands on the application of chiral alkali metal salts of chiral phosphoric acids in asymmetric catalysis. Asymmetric functionalization of N–H bonds constitutes an important but less developed class of reactions. Here, the authors report the asymmetric direct N-propargylation of indoles and carbazoles with a lithium SPINOL phosphate as the chiral catalyst and shed light on the reaction mechanism.
Collapse
Affiliation(s)
- Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Sheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
23
|
Yu S, Chen J, Liu G, Lei J, Hu W, Qiu H. A gold(i)-catalysed chemoselective three-component reaction between phenols, α-diazocarbonyl compounds and allenamides. Chem Commun (Camb) 2020; 56:1649-1652. [DOI: 10.1039/c9cc09470a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold(i)-catalysed highly chemoselective three-component reaction of phenols, α-diazocarbonyl compounds and allenamides is presented. This transformation features mild reaction conditions, high functional group tolerance, and broad applicability.
Collapse
Affiliation(s)
- Sifan Yu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jinzhou Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Gengxin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
24
|
Yang J, He Z, Hong L, Sun W, Wang R. Asymmetric N-aminoalkylation of 3-substituted indoles by N-protected N,O-acetals: an access to chiral propargyl aminals. Org Biomol Chem 2020; 18:4169-4173. [DOI: 10.1039/d0ob00795a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct enantioselective N1 aminoalkylation of 3-substituted indoles is efficiently catalyzed by a phosphoric acid catalyst under mild conditions, which could be applied to the modification of tryptophan containing oligopeptides.
Collapse
Affiliation(s)
- Junxian Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- Institute of Pharmacology
- School of Basic Medical Sciences & Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- 2019RU066
| |
Collapse
|
25
|
Chen L, Yu J, Tang S, Shao Y, Sun J. Gold-Catalyzed Highly Diastereoselective Oxy-Propargylamination of Allenamides with C-Alkynyl N-Boc N,O-Acetals. Org Lett 2019; 21:9050-9054. [DOI: 10.1021/acs.orglett.9b03449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Long Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianliang Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
26
|
Feng FF, Li S, Cheung CW, Ma JA. Chiral β-Keto Propargylamine Synthesis via Enantioselective Mannich Reaction of Enamides with C-Alkynyl N-Boc N,O-Acetals. Org Lett 2019; 21:8419-8423. [DOI: 10.1021/acs.orglett.9b03181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fang-Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| | - Shen Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P.R. China
| |
Collapse
|
27
|
Chen T, Gan L, Wang R, Deng Y, Peng F, Lautens M, Shao Z. Rhodium(I)/Zn(OTf)
2
‐Catalyzed Asymmetric Ring Opening/Cyclopropanation of Oxabenzonorbornadienes with Phosphorus Ylides. Angew Chem Int Ed Engl 2019; 58:15819-15823. [DOI: 10.1002/anie.201909596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Tao Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Lifei Gan
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Ran Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Mark Lautens
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| |
Collapse
|
28
|
Chen T, Gan L, Wang R, Deng Y, Peng F, Lautens M, Shao Z. Rhodium(I)/Zn(OTf)
2
‐Catalyzed Asymmetric Ring Opening/Cyclopropanation of Oxabenzonorbornadienes with Phosphorus Ylides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tao Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Lifei Gan
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Ran Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| | - Mark Lautens
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education School of Chemical Science and Technology State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan Yunnan University Kunming 650091 China
| |
Collapse
|
29
|
Zha T, Tong X, Deng Y, Peng F, Shao Z. Catalytic Asymmetric and Divergent Synthesis of Tricyclic and Tetracyclic Spirooxindoles: Controllable Site-Selective Electrophilic Halocyclization of 1,6-Enynes. Org Lett 2019; 21:6068-6073. [PMID: 31318558 DOI: 10.1021/acs.orglett.9b02202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Catalytic asymmetric and divergent assembly of tricyclic and tetracyclic 3,3'-pyrrolidonyl spirooxindoles was developed, involving a one-pot chiral Brønsted base catalyzed asymmetric propargylation for the synthesis of oxindole 1,6-enynes and a subsequent switchable site-selective and highly diastereoselective electrophilic iodocyclization of 1,6-enynes. In addition, antitumor properties of the newly synthesized compounds were evaluated.
Collapse
Affiliation(s)
- Taochun Zha
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Xinyu Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
30
|
Yu S, Hua R, Fu X, Liu G, Zhang D, Jia S, Qiu H, Hu W. Asymmetric Multicomponent Reactions for Efficient Construction of Homopropargyl Amine Carboxylic Esters. Org Lett 2019; 21:5737-5741. [DOI: 10.1021/acs.orglett.9b02139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sifan Yu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruyu Hua
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gengxin Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shikun Jia
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Qiu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
31
|
Jia S, Yang X, Dong G, Ao C, Jiang X, Hu W. Trapping of Zwitterionic Intermediates by Isatins and Imines: Synthesis of Benzoxazines Bearing a C4-Quaternary Stereocenter. Org Lett 2019; 21:4014-4018. [DOI: 10.1021/acs.orglett.9b01207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shikun Jia
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Guizhi Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chaoqun Ao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|