1
|
Rong Y, Liu JQ, Wang XS. Access to Spiro-Quinazolines via an Acid-Catalyzed Ring-Opening of Isatins with N-Alkylureas. J Org Chem 2025; 90:3428-3434. [PMID: 39998435 DOI: 10.1021/acs.joc.4c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Herein, we report novel p-TSA·H2O-catalyzed ring-opening reactions of isatins with N-alkylureas, allowing access to spiro-quinazolines with excellent substrate scope and good yields. Introducing N,N-dialkylureas, 2,4-thiazolidinedione, or rhodamine into the reactions leads to a distinct set of three-component reactions, yielding innovative spiro-quinazolines incorporating sulfur atoms. Notably, the protocol achieves a superior level of atomic economy, with water as the sole byproduct.
Collapse
Affiliation(s)
- Yuchen Rong
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
2
|
Sakai D, Kojima T, Kawasaki-Takasuka T, Mori K. Stereoselective synthesis of 6/7/6-fused heterocycles with multiple stereocenters via an internal redox reaction/inverse electron-demand hetero-Diels-Alder reaction sequence. Chem Commun (Camb) 2024; 60:6797-6800. [PMID: 38869043 DOI: 10.1039/d4cc02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A highly stereoselective synthesis of fused heterocycles with multiple stereocenters via an internal redox reaction/inverse electron-demand hetero-Diels-Alder (IEDHDA) reaction sequence is described. The present reaction sequence has three interesting features: (1) complete control of two potentially competitive processes, i.e., hetero-Diels-Alder reaction and [1,5]-hydride shift; (2) one-shot construction of the complicated 6/7/6-fused heterocyclic structure having multiple stereocenters; and (3) high control of its stereoselectivity. When alkenylidene barbiturates with an allyl benzyl ether moiety were treated with a catalytic amount of Sc(OTf)3 and 2,2'-bipyridine, the internal redox reaction/IEDHDA reaction proceeded successively to afford 6/7/6-fused heterocycles in good chemical yields with good to excellent diastereoselectivities.
Collapse
Affiliation(s)
- Dan Sakai
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology (KCCT), 8-3 Gakuen-Higashimachi, Nishi-ku, Kobe, Hyogo 651-2194, Japan
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
3
|
Wang D, Tang T, Sun J, Han Y, Yan CG. Synthesis of Spiro[indoline-pyridine]-dicarboxylates and Substituted Alkylidene Oxindoles by Azomethine Ylides and MBH Carbonates of Isatins. Org Lett 2024; 26:4117-4121. [PMID: 38722200 DOI: 10.1021/acs.orglett.4c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have developed an efficient protocol for the synthesis of spiro[indoline-pyridine]dicarboxylates and substituted alkylidene oxindoles through [3 + 3] cycloaddition and Michael addition individually by azomethine ylides and various MBH carbonates of isatins. The selective generation of cyclic products and chain products was achieved by changing the substituents at the 3-position of the oxindoles. The features of this method include convenient catalysts, mild reaction conditions, and broad substrate scopes.
Collapse
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ting Tang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Wang L, Song X, Guo F, Xu L, Hu F, Guo FW, Li SS. Diversity-oriented synthesis of indole-fused scaffolds and bis(indolyl)methane from tosyl-protected tryptamine. Org Biomol Chem 2024; 22:2824-2834. [PMID: 38511321 DOI: 10.1039/d4ob00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
An efficient, diversity-oriented synthesis of indole-1,2-fused 1,4-benzodiazepines, tetrahydro-β-carbolines, and 2,2'-bis(indolyl)methanes was established starting from tosyl-protected tryptamine. These diverse privileged skeletons were controllably constructed by adjusting different hydride donors and Brønsted acids. A variety of indole-1,2-fused 1,4-benzodiazepines were facilely accessed using benzaldehydes bearing cyclic amines as hydride donors via a cascade N-alkylation/dehydration/[1,5]-hydride transfer/Friedel-Crafts alkylation sequence. The reaction site could be switched when benzaldehydes bearing an alkoxy moiety as hydride donors were used for the generation of tetrahydro-β-carbolines. On the other hand, the switchable synthesis of 2,2'-bis(indolyl)methanes could be achieved as well by applying p-TsOH·H2O as a catalyst. The reactions feature mild conditions, simple and practical operation, excellent efficiency and the use of EtOH as a green solvent. Using the concept of diversity-oriented, reagent-based synthesis, the inexpensive feedstock tryptamine was efficiently converted to three different types of privileged scaffolds, which facilitates rapid compound library synthesis for accelerating drug discovery.
Collapse
Affiliation(s)
- Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaopei Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fengxia Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Koyama R, Anada M, Sueki S, Makino K, Kojima T, Kawasaki-Takasuka T, Mori K. Divergent synthesis of multi-substituted phenanthrenes via an internal redox reaction/ring expansion sequence. Chem Commun (Camb) 2024; 60:3822-3825. [PMID: 38497170 DOI: 10.1039/d4cc00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We report an effective synthetic route to multi-substituted phenanthrenes via an internal redox reaction/ring expansion sequence. The interesting feature of the present system is that it allows for the divergent synthesis of the target skeleton depending on the selected Lewis acid catalyst. When benzylidene malonates with a cyclic structure at the ortho-position were treated with BF3·OEt2, three sequential processes (internal redox reaction/elimination of the alkoxy group/ring expansion) proceeded to give phenanthrene derivatives in which the alkoxycarbonyl (CO2R) group and the alkyl (R) group were in close proximity to each other, in good chemical yields. In sharp contrast, treatment with Bi(OTf)3 exclusively led to the formation of another type of phenanthrene, whose R group was positioned distal to the CO2R group.
Collapse
Affiliation(s)
- Ryosei Koyama
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunsuke Sueki
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Kosho Makino
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology (KCCT), 8-3 Gakuen-Higashimachi, Nishi-ku, Kobe, 651-2194, Japan
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
6
|
Samantaray S, Maharana PK, Kar S, Saha S, Punniyamurthy T. Redox-neutral zinc-catalyzed cascade [1,4]-H shift/annulation of diaziridines with donor-acceptor aziridines. Chem Commun (Camb) 2024; 60:3441-3444. [PMID: 38445334 DOI: 10.1039/d4cc00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The coupling of diaziridines with donor-acceptor aziridines (DAAs) has been achieved using Zn-catalysis to furnish imidazopyrazole-4,4-dicarboxylates via [1,4]-hydride shift. The use of Zn-catalysis, [1,4]-hydride shift, natural product modification and a late-stage molecular docking study are important practical features.
Collapse
Affiliation(s)
- Swati Samantaray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
7
|
Sun Z, Hou R, Li SS, Wang X, Wang L, Hu F, Guo FW. Controllable Synthesis of N- and O-Containing Heterocycles via Formal [3 + 2] and [5 + 2] Cyclizations. Org Lett 2024; 26:6-11. [PMID: 38157254 DOI: 10.1021/acs.orglett.3c03227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The controllable synthesis of spirooxindole-dihydrofurans and spirooxindole-benzazepines was developed through formal [3 + 2] and [5 + 2] cyclization reactions from 2-(2-oxoindolin-3-yl)malononitriles and ortho-aminobenzaldehydes, respectively. A variety of spirooxindole-benzazepines were facilely constructed via a furan ring-open-involved hydride transfer/cyclization process. It is noteworthy that the application of the hydride-transfer-involved [5 + 2] cyclization strategy for construction of spirobenzazepines was unprecedented. In addition, the spiro N- and O-containing heterocycles were highly functionalized by amino, amide, and cyano groups, which were conducive to late-stage functionalization.
Collapse
Affiliation(s)
- Zhipeng Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Xinyu Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
8
|
Dong Y, Hu F, Wu H, Guo FW, Wang L, Du FY, Li SS. Controllable Synthesis of N-Heterocycles via Hydride Transfer Strategy-Enabled Formal [5 + 1] and [5 + 2] Cyclizations. Org Lett 2024; 26:332-337. [PMID: 38153999 DOI: 10.1021/acs.orglett.3c03986] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The Brønsted acid-controlled switchable synthesis of indoline-fused tetrahydroquinolines and indole-fused benzazepines was developed through hydride transfer-enabled formal [5 + 1] and [5 + 2] cyclization reactions from indoles and N-alkyl o-aminobenzoketones. Indoline, furanone, and tetrahydroquinoline hybridized pentacyclic products were unprecedentedly accessed via a cascade condensation/hydride transfer/dearomatization-cyclization/deethylation/nucleophilic addition process. In addition, the undeveloped hydride transfer-involved [5 + 2] cyclizations were also realized for direct construction of indole-fused benzazepines.
Collapse
Affiliation(s)
- Ying Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Huixin Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Feng-Wei Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Feng-Yu Du
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Rd. #700, Qingdao 266109, P. R. China
| |
Collapse
|
9
|
Xie X, Huang H, Fan Y, Luo Y, Pang Q, Li X, Huang W. Assembly of spirocyclic pyrazolone-pyrrolo[4,3,2- de]quinoline skeleton via cascade [1,5] hydride transfer/cyclization by C(sp 3)-H functionalization. Org Biomol Chem 2023; 21:7300-7304. [PMID: 37667627 DOI: 10.1039/d3ob01063e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Herein, a highly efficient, scalable, and cascade [1,5] hydride transfer/cyclization method for constructing unique spirocyclic pyrazolone-pyrrolo[4,3,2-de]quinoline structures via C(sp3)-H functionalization is achieved, using pyrazolones and oxindoles attached to C4 amines. This strategy represents a limited approach utilizing C-H activation to construct spirocyclic pyrazolone scaffolds with moderate to excellent reaction performance.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Shen YB, Hu F, Li SS. Alkyl amines and ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions. Org Biomol Chem 2023; 21:700-714. [PMID: 36601772 DOI: 10.1039/d2ob02146c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of alkyl amines and ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions represents a promising strategy that greatly enriches redox-neutral hydride transfer chemistry. This review summarizes the remarkable progress made in this field, and focuses on (1) alkyl amines as traceless hydride donors in cascade [1,5]-hydride transfer/elimination reactions and (2) alkyl ethers as traceless hydride donors in [1,5]-hydride transfer cascade reactions. The reaction mechanisms, features, scope, limitations, and synthetic applications are included, where appropriate. Importantly, its powerful ability in allene synthesis and the combination with [Re]-vinylidene and carbocation chemistries render this strategy attractive enough to inspire chemists to develop colorful reactions for building molecular complexity.
Collapse
Affiliation(s)
- Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Cao L, Hu F, Dong J, Zhang XM, Li SS. Aromatization-driven cascade [1,5]-hydride transfer/cyclization for synthesis of spirochromanes. Org Chem Front 2023. [DOI: 10.1039/d3qo00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An aromatization-driven hydride transfer-involved α-C(sp3)–H bond functionalization of the oxygen atom was developed. Easily prepared p-quinone methides were applied to initiate [1,5]-hydride transfer/cyclization for generating spirochromanes.
Collapse
|
12
|
Mori K, Okawa H. Hydride shift mediated C(sp3)–H bond functionalization starting from non-aniline/phenol type substrates: Evolution into a sequential system. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
He Y, Liu Q, Du Z, Xu Y, Cao L, Zhang X, Fan X. B(C 6F 5) 3-Catalyzed α,β-Difunctionalization and C-N Bond Cleavage of Saturated Amines with Benzo[ c]isoxazoles: Access to Quinoline Derivatives. J Org Chem 2022; 87:14840-14845. [PMID: 36269623 DOI: 10.1021/acs.joc.2c01290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we disclose a strategy to realize α,β-difunctionalization and C-N bond cleavage of saturated amines with benzo[c]isoxazoles via a B(C6F5)3-catalyzed consecutive hydrogen-borrowing and [4 + 2] cycloaddition followed by a C-N bond cleavage process. In general, the reactions proceed efficiently in the absence of any oxidant and metal catalyst to afford a broad range of quinoline derivatives starting from easily accessible substrates in an atom-economical manner.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zihe Du
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanhua Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingyu Cao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Structural and physical characterizations of an organic Dispiro-Oxindolopyrrolidines single crystal for magnetic applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mori K. C(sp3)–H Bond Functionalization Mediated by Hydride Shift/Cyclization System. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| |
Collapse
|
16
|
Hu F, Wang L, Wang P, Ding Z, Chen Y, Xu L, Liu XL, Li SS. Switchable construction of oxa-heterocycles with diverse ring sizes via chemoselective cyclization controlled by dibrominated compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switchable construction of oxa-heterocycles with diverse ring sizes has been developed by performing dibrominated-compound-controlled chemoselective cyclization and subsequent derivatization.
Collapse
Affiliation(s)
- Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhanshuai Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuzhuo Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, P. R. China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
17
|
Yin ZG, Liu XW, Chen L, Liu XL, Pan BW, Zhou Y. Regio- and stereoselective synthesis and evaluation of densely functionalized bispiro[oxindole-isoxazole-indandione] hybrids as anticancer agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj03349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the combination of three key pharmacophores through bispiro quaternary carbon atoms and evaluation of their anticancer activity.
Collapse
Affiliation(s)
- Zhi-Gang Yin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xiong-Wei Liu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lin Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xiong-Li Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Bo-Wen Pan
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
18
|
Cao L, Hu F, Sun H, Zhang X, Li SS. Redox-triggered dearomative [5 + 1] annulation of indoles with O-alkyl ortho-oxybenzaldehydes for the synthesis of spirochromanes. Org Chem Front 2022. [DOI: 10.1039/d1qo01755a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dearomative [5 + 1] annulation of 2-methylindoles with new five-membered synthon was developed through cascade [1,5]-hydride transfer/dearomative cyclization in HFIP for the synthesis of spirochromanes bearing the 2-methylindolenine skeleton.
Collapse
Affiliation(s)
- Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangzhi Hu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongmei Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Shuai-Shuai Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
19
|
Ge C, Wang L, Hu F, Ding Z, Li X, Xiao D, Wang J, Li SS. HFIP-mediated three-component imidization of electron-rich arenes with in situ formed spiroindolenines for facile construction of 2-arylspiroindolenines. Org Chem Front 2022. [DOI: 10.1039/d1qo01862k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The three-component reaction of o-aminobenzaldehydes with 5-hydroxyindole and electron-rich arenes has been achieved through HFIP-mediated cascade hydride transfer/dearomative cyclization/CDC-type imidization at room temperature under air.
Collapse
Affiliation(s)
- Chunyan Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhanshuai Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyao Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Deshuai Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiayi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
20
|
Hu F, Li X, Ding Z, Wang L, Ge C, Xu L, Li SS. Divergent Synthesis of [3,4]-Fused 3-Alkenyl-Oxindoles via Propargyl Alcohol-Triggered C(sp3)–H Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyao Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhanshuai Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunyan Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
21
|
Hoshino D, Mori K. Divergent Access to Seven/Five-Membered Rings Based on [1,6]-Hydride Shift/Cyclization Process. Org Lett 2021; 23:9403-9407. [PMID: 34846903 DOI: 10.1021/acs.orglett.1c03523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have achieved a divergent access to seven/five-membered rings based on a [1,6]-hydride shift/cyclization process from benzylidenemalonate with an o-alkoxymethyl group. Whereas Yb(OTf)3 afforded benzoxepines (with a seven-membered ring) selectively, indanes (with a five-membered ring) were the main products when Sc(OTf)3 was employed.
Collapse
Affiliation(s)
- Daiki Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
22
|
Yang S, An XD, Qiu B, Liu RB, Xiao J. Access to Polycyclic Indole-3,4-Fused Nine-Membered Ring via Cascade 1,6-Hydride Transfer/Cyclization. Org Lett 2021; 23:9100-9105. [PMID: 34766504 DOI: 10.1021/acs.orglett.1c03389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cascade aldimine condensation/1,6-hydride transfer/Mannich-type cyclization of indole-derived phenylenediamine with aldehydes was developed for one-step construction of a polycyclic indole-3,4-fused skeleton. Aldehyde serves as a key to start the whole process, including 1,6-hydride transfer enabled δ-C(sp3)-H activation of the secondary amine. The challenges of construction of medium-sized rings are addressed via hydride transfer chemistry.
Collapse
Affiliation(s)
- Shuo Yang
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-De An
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui-Bin Liu
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou 256500, China
| | - Jian Xiao
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
23
|
Mikhaylov AA, Shirokova VV, Ikonnikova VA, Solyev PN, Lushpa VA, Korlyukov AA, Volodin AD, Baleeva NS, Baranov MS. 1,5-Hydride-Shift-Triggered Cyclization for the Synthesis of Unsymmetric Julolidines. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1559-2728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractDirectly accessible 8-substituted tetrahydroquinolines undergo 1,5-hydride-shift-triggered cyclization to provide difficult to access julolidine derivatives in yields of 21–98% under scandium(III) triflate catalysis. Additionally, the scope of the reaction, several follow-up transformations and a remarkable side process discovered during optimization of the conditions are highlighted.
Collapse
Affiliation(s)
- Andrey A. Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- National Research University Higher School of Economics
| | - Vasilissa V. Shirokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia
| | - Viktoria A. Ikonnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences
| | - Vladislav A. Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | | | | | - Nadezhda S. Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
| |
Collapse
|
24
|
Babar K, Zahoor AF, Ahmad S, Akhtar R. Recent synthetic strategies toward the synthesis of spirocyclic compounds comprising six-membered carbocyclic/heterocyclic ring systems. Mol Divers 2021; 25:2487-2532. [PMID: 32696299 DOI: 10.1007/s11030-020-10126-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Spirocyclic compounds fascinate the synthetic chemists due to their privileged ring system and efficacy in drug discovery. Many natural compounds comprise spirocyclic moiety in their skeleton and are effective in pharmaceutical industry. Over the years, many synthetic methodologies have been established for the construction of spirocyclic compounds. In this review, recent synthetic approaches to accessing various spirocompounds comprising six-membered carbocycles/heterocycles have been summarized.
Collapse
Affiliation(s)
- Kashaf Babar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology, Faisalabad, 38000, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
25
|
Stereoselective synthesis of highly congested tetralin-fused spirooxindoles with hydroxy group: Pseudo oxygen atom induced hydride shift/cyclization process. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
27
|
Yang X, Liu J, Hu F, Sun H, Wang L, Li SS. Diverse Application of 4-Hydroxycoumarin in the Syntheses of Tetrahydroquinoline and Zwitterionic Biscoumarin Derivatives. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Guo M, Dong F, Yin X, Xu L, Wang L, Li SS. Facile syntheses of tetrahydroquinolines and 1,2-dihydroquinolines via vinylogous cascade hydride transfer/cyclization. Org Chem Front 2021. [DOI: 10.1039/d0qo01622e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The medicinally significant 3-monosubstituted tetrahydroquinolines and 1,2-dihydroquinolines were controllably constructed via redox-neutral vinylogous cascade condensation/[1,5]-hydride transfer/cyclization in EtOH.
Collapse
Affiliation(s)
- Mengzhu Guo
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory
- The Affiliated Hospital of Qingdao University
- Qingdao
- P. R. China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
29
|
An XD, Xiao J. Recent advances in hydride transfer-involved C(sp3)–H activation reactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01502d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review summarizes the recent progresses (2016–2020) in the hydride transfer-enabled C(sp3)–H activation according to the reaction types, categorized into the intramolecular/intermolecular C(sp3)–H functionalization, and hydride reduction.
Collapse
Affiliation(s)
- Xiao-De An
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Marine Science and Engineering
| |
Collapse
|
30
|
Yang X, Wang L, Hu F, Xu L, Li S, Li SS. Redox-Triggered Switchable Synthesis of 3,4-Dihydroquinolin-2(1H)-one Derivatives via Hydride Transfer/N-Dealkylation/N-Acylation. Org Lett 2020; 23:358-364. [DOI: 10.1021/acs.orglett.0c03863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiaoyu Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road #700, Qingdao 266109, PR China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road #700, Qingdao 266109, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road #53, Qingdao 266042, PR China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road #700, Qingdao 266109, PR China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road #700, Qingdao 266109, PR China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Hongliu Road #85, Benxi 117004, PR China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Changcheng Road #700, Qingdao 266109, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road #53, Qingdao 266042, PR China
| |
Collapse
|
31
|
Liu S, Wang H, Wang B. Catalyst-free construction of spiro [benzoquinolizidine-chromanones] via a tandem condensation/1,5-hydride transfer/cyclization process. Org Biomol Chem 2020; 18:8839-8843. [PMID: 33104768 DOI: 10.1039/d0ob01887b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A catalyst-free tandem 1,5-hydride shift/cyclization process to form spiro [benzoquinolizidine-chromanones] is developed, which features high atom- and step-economy, high levels of stereocontrol, mild conditions, and a simple workup process. A series of new polycyclic spiro [benzoquinolizidine-chromanones] were obtained in high yields with excellent diastereoselectivities (up to 91% yield, >20 : 1 dr).
Collapse
Affiliation(s)
- Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| | | | | |
Collapse
|
32
|
Geng X, Liu S, Wang W, Qu J, Wang B. tert-Amino Effect-Promoted Rearrangement of Aryl Isothiocyanate: A Versatile Approach to Benzimidazothiazepines and Benzimidazothioethers. J Org Chem 2020; 85:12635-12643. [PMID: 32875799 DOI: 10.1021/acs.joc.0c01806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A general and practical approach to benzimidazothiazepine and benzimidazothioether derivatives via an intramolecular nucleophilic addition/ring expansion rearrangement of aryl isothiocyanates promoted by the tert-amino effect has been developed. This reaction is catalyzed by low-cost camphorsulfonic acid and tolerates a broad substrate scope with complete atom economy. Structurally intriguing benzimidazothiazepine and benzimidazothioether products could be easily obtained by a simple operation in good to excellent yield (up to 98%).
Collapse
Affiliation(s)
- Xinyu Geng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Siyuan Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Wenyao Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
33
|
Hoshino D, Mori K. Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Brønsted acid catalysts. Org Biomol Chem 2020; 18:6602-6606. [PMID: 32815970 DOI: 10.1039/d0ob01582b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report herein a rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans via a [1,4]-hydride shift/cyclizatin/intermolecular nucleophilic addition reaction sequence. In this process, a Lewis acid promoted internal redox reaction ([1,4]-hydride shift/cyclization) followed by a Brønsted acid promoted intermolecular reaction (generation of cyclic oxonium cation/intermolecular Friedel-Crafts reaction) occurred to give various 3-indolyl-1-trifluoromethyl-isobenzofurans in good chemical yields.
Collapse
Affiliation(s)
- Daiki Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | | |
Collapse
|
34
|
An XD, Yang S, Qiu B, Yang TT, Li XJ, Xiao J. Photoredox-Enabled Synthesis of β-Substituted Pyrroles from Pyrrolidines. J Org Chem 2020; 85:9558-9565. [PMID: 32567860 DOI: 10.1021/acs.joc.0c00459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The merger of photoredox-initiated enamine-imine tautomerization and nucleophilic addition processes to access β-substituted pyrroles from pyrrolidines has been achieved. The significant advantage of this method is suppressing the Friedel-Crafts reaction, which usually occurs between N-aryl pyrrolidines and the highly electrophilic ketoesters. The good functional group tolerance, high atom economy, and high regioselectivity as well as easy handling conditions make it an appealing alternative to synthesize β-substituted pyrroles.
Collapse
Affiliation(s)
- Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting-Ting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou 256500, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
35
|
Yokoo K, Sakai D, Mori K. Highly Stereoselective Synthesis of Fused Tetrahydropyrans via Lewis-Acid-Promoted Double C(sp3)–H Bond Functionalization. Org Lett 2020; 22:5801-5805. [DOI: 10.1021/acs.orglett.0c01867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuma Yokoo
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Dan Sakai
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
36
|
Yang X, Hu F, Wang L, Xu L, Li SS. Hydrogen-bonding-assisted redox-neutral construction of tetrahydroquinolines via hydride transfer. Org Biomol Chem 2020; 18:4267-4271. [PMID: 32441733 DOI: 10.1039/d0ob00521e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hydrogen-bonding-assisted construction of tetrahydroquinolines decorated with structurally diverse 3,3'-difunctional groups has been realized via a hydride transfer-involved three-step cascade reaction in the presence of morpholine. This protocol solves the limitation of acyclic 1,3-dicarbonyl compounds by one-pot synthesis of tetrahydroquinolines, featuring operational simplicity, broadly applicable substrates, and metal- and acid-free conditions with EtOH as a hydrogen-bonding donor.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China. and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. #53, Qingdao 266042, P. R. China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China. and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. #53, Qingdao 266042, P. R. China
| |
Collapse
|
37
|
Duan K, An XD, Li LF, Sun LL, Qiu B, Li XJ, Xiao J. Hydride Transfer Initiated Redox-Neutral Cascade Cyclizations of Aurones: Facile Access to [6,5] Spirocycles. Org Lett 2020; 22:2537-2541. [PMID: 32186385 DOI: 10.1021/acs.orglett.0c00309] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reported herein is the hydride transfer initiated redox-neutral cascade cyclizations of aurones, providing a variety of [6,5] spiro-heterocycles in satisfactory yields and good diastereoselectivities.
Collapse
Affiliation(s)
- Kang Duan
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-De An
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Long-Fei Li
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lian-Lian Sun
- The Affiliated Hospital of Huizhou Health Sciences Polytechnic, Huizhou, 516025, China
| | - Bin Qiu
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou, 256500, China
| | - Jian Xiao
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
38
|
Prabhakaran P, Rajakumar P. Regio- and stereoselective synthesis of spiropyrrolidine-oxindole and bis-spiropyrrolizidine-oxindole grafted macrocycles through [3 + 2] cycloaddition of azomethine ylides. RSC Adv 2020; 10:10263-10276. [PMID: 35498613 PMCID: PMC9050375 DOI: 10.1039/c9ra10463a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
A convenient and efficient method for the regioselective macrocyclization of triazole bridged spiropyrrolidine-oxindole, and bis-spiropyrrolizidine-oxindole derivatives was accomplished through intra and self-intermolecular [3 + 2] cycloaddition of azomethine ylides. The chalcone isatin precursors 9a-i required for the click reaction were obtained from the reaction of N-alkylazidoisatin 4 and propargyloxy chalcone 8a-i which in turn were obtained by the aldol condensation of propargyloxy salicylaldehyde 6 and substituted methyl ketones 7a-i. The regio- and stereochemical outcome of the cycloadducts were assigned based on 2D NMR and confirmed by single crystal XRD analysis. High efficiency, mild reaction conditions, high regio- and stereoselectivity, atom economy and operational simplicity are the exemplary advantages of the employed macrocyclization procedure.
Collapse
Affiliation(s)
- Perumal Prabhakaran
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| |
Collapse
|
39
|
Shen YB, Wang LX, Sun YM, Dong FY, Yu L, Liu Q, Xiao J. Hexafluoroisopropanol-Mediated Redox-Neutral α-C(sp 3)-H Functionalization of Cyclic Amines via Hydride Transfer. J Org Chem 2020; 85:1915-1926. [PMID: 31823616 DOI: 10.1021/acs.joc.9b02606] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hexafluoroisopropanol has been demonstrated as the versatile promoter for redox-neutral α-C(sp3)-H functionalization of cyclic amines via the cascade [1,5]-hydride transfer/cyclization strategy. A wide range of cyclic amines are functionalized into bioactive tetrahydroquinolines, quinazolines, benzoxazines, and benzotriazepines in moderate to excellent yields. This protocol features additive-free conditions, operational simplicity, and wide substrate scope.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , China
| | | |
Collapse
|
40
|
Zhou L, An XD, Yang S, Li XJ, Shao CL, Liu Q, Xiao J. Organocatalytic Cascade β-Functionalization/Aromatization of Pyrrolidines via Double Hydride Transfer. Org Lett 2020; 22:776-780. [DOI: 10.1021/acs.orglett.9b03918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lan Zhou
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-De An
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Yang
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co., Ltd., Binzhou 256500, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qing Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Xiao
- Shandong Province Key Laboratory of Applied Mycology, School of Chemistry and Pharmaceutical Sciences, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
41
|
Yokoo K, Mori K. Expeditious Synthesis of Multisubstituted Quinolinone Derivatives Based on Ring Recombination Strategy. Org Lett 2020; 22:244-248. [PMID: 31834806 DOI: 10.1021/acs.orglett.9b04224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We achieved a concise construction of 3-substituted quinolinone derivatives based on a ring recombination strategy. In this process, seven transformations involving two types of cyclization proceeded in one pot to afford various quinolinone derivatives in good to excellent chemical yields (up to 98%).
Collapse
Affiliation(s)
- Kazuma Yokoo
- Department of Applied Chemistry , Graduate School of Engineering, Tokyo University of Agriculture and Technology , 2-24-16 Nakacho , Koganei , Tokyo 184-8588 , Japan
| | - Keiji Mori
- Department of Applied Chemistry , Graduate School of Engineering, Tokyo University of Agriculture and Technology , 2-24-16 Nakacho , Koganei , Tokyo 184-8588 , Japan
| |
Collapse
|
42
|
Duan K, Shi H, Wang LX, Li SS, Xu L, Xiao J. Hydride transfer enabled switchable dearomatization of indoles in the carbocyclic ring and the pyrrole ring. Org Chem Front 2020. [DOI: 10.1039/d0qo00658k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydride transfer enabled the first success of the regioselective dearomatization of indoles in the carbocyclic ring and the pyrrole ring, which was induced by ortho-quinone methides and vinylogous iminium intermediates, respectively.
Collapse
Affiliation(s)
- Kang Duan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Hongjin Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Lin-Xuan Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- School of Marine Science and Engineering
| |
Collapse
|
43
|
Zhang CH, Huang R, Qing X, Lin J, Yan SJ. Cascade reaction of isatins with nitro-substituted enamines: highly selective synthesis of functionalized (Z)-3-(1-(arylamino)-2-oxoarylidene)indolin-2-ones. Chem Commun (Camb) 2020; 56:3488-3491. [DOI: 10.1039/d0cc00923g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel protocol for the construction of functionalized (Z)-3-(1(-arylamino)-2-oxoarylidene)indolin-2-ones (AOIDOs) from isatins 1 with nitro-substituted enamines 2via an unprecedented cascade reaction catalyzed by sulfamic acid is developed.
Collapse
Affiliation(s)
- Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Xia Qing
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
44
|
Yuan K, Dong F, Yin X, Li SS, Wang L, Xu L. The dual alkylation of the C(sp3)–H bond of cyclic α-methyl-N-sulfonyl imines via the sequential condensation/hydride transfer/cyclization process. Org Chem Front 2020. [DOI: 10.1039/d0qo00972e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dual alkylation of the C(sp3)–H bond of the cyclic α-methyl-N-sulfonyl imine has been achieved through the piperidine-promoted cascade condensation/[1,5]-hydride transfer/cyclization from cyclic α-methyl-N-sulfonyl imine and o-aminobenzaldehyde in trifluoroethanol.
Collapse
Affiliation(s)
- Kejin Yuan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory
- The Affiliated Hospital of Qingdao University
- Qingdao
- P. R. China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
45
|
Shi H, Wang L, Li SS, Liu Y, Xu L. Divergent syntheses of spirooxindoles from oxindole-embedded four-membered synthon via cycloaddition reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00038h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of five and six membered heterocycle fused spirooxindoles was achieved via the [4 + 1] and formal [4 + 2] cycloadditions between our rationally designed four-membered synthons and pyridinium methylides and α-bromoacetophenones, respectively.
Collapse
Affiliation(s)
- Hongjin Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Yongjun Liu
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
46
|
Kataoka M, Otawa Y, Ido N, Mori K. Highly Diastereoselective Synthesis of Medium-Sized Carbocycle-Fused Piperidines via Sequential Hydride Shift Triggered Double C(sp3)–H Bond Functionalization. Org Lett 2019; 21:9334-9338. [DOI: 10.1021/acs.orglett.9b03498] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Miyabi Kataoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yuna Otawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Natsuki Ido
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
47
|
Wang S, Shen YB, Li LF, Qiu B, Yu L, Liu Q, Xiao J. N-Alkylation-Initiated Redox-Neutral [5 + 2] Annulation of 3-Alkylindoles with o-Aminobenzaldehydes: Access to Indole-1,2-Fused 1,4-Benzodiazepines. Org Lett 2019; 21:8904-8908. [DOI: 10.1021/acs.orglett.9b03011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuai Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yao-Bin Shen
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Long-Fei Li
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liping Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Xiao
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
48
|
Anderson JC, Chang CH, Corpinot MK, Nunn M, Ware OJ. Investigation of the [1,5]-hydride shift as a route to nitro-Mannich cyclisations. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Zhou L, Shen YB, An XD, Li XJ, Li SS, Liu Q, Xiao J. Redox-Neutral β-C(sp 3)-H Functionalization of Cyclic Amines via Intermolecular Hydride Transfer. Org Lett 2019; 21:8543-8547. [PMID: 31633932 DOI: 10.1021/acs.orglett.9b03004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the first redox-neutral and transition-metal-free β-C(sp3)-H functionalization of cyclic amines via a consecutive intermolecular hydride transfer process. A series of N-aryl pyrrolidines and N-aryl 1,2,3,4-tetrahydropyridines decorated with CF3 and carboxylic ester functionalities are directly accessed in good yields from pyrrolidines and piperidines. This work pushes forward the application of the intermolecular hydride transfer strategy in one-step assembly of molecular complexity.
Collapse
Affiliation(s)
- Lan Zhou
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao , 266109 , China
| | - Yao-Bin Shen
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao , 266109 , China
| | - Xiao-De An
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao , 266109 , China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd. , Binzhou , 256500 , China
| | - Shuai-Shuai Li
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao , 266109 , China
| | - Qing Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , China
| | - Jian Xiao
- Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao , 266109 , China.,College of Marine Science and Engineering , Qingdao Agricultural University , Qingdao 266109 , China
| |
Collapse
|
50
|
Shen YB, Li LF, Xiao MY, Yang JM, Liu Q, Xiao J. Redox-Neutral Cascade Dearomatization of Indoles via Hydride Transfer: Divergent Synthesis of Tetrahydroquinoline-Fused Spiroindolenines. J Org Chem 2019; 84:13935-13947. [DOI: 10.1021/acs.joc.9b02110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | - Qing Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | | |
Collapse
|