1
|
Mando M, Grellepois F, Blanc A, Hénon E, Riguet E. Toward Efficient and Stereoselective Aromatic and Dearomative Cope Rearrangements: Experimental and Theoretical Investigations of α-Allyl-α'-Aromatic γ-Lactone Derivatives. Chemistry 2024; 30:e202304138. [PMID: 38284279 DOI: 10.1002/chem.202304138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The aromatic Cope rearrangement is an elusive transformation that has been the subject of a limited number of investigations compared to those seemingly close analogues, namely the Cope and aromatic Claisen rearrangement. Herein we report our investigations inspired by moderate success observed in the course of pioneering works. By careful experimental and theoretical investigations, we demonstrate that key substitutions on 1,5-hexadiene scaffold allow fruitful transformations. Especially, efficient functionalisation of the heteroaromatic rings results from the aromatic Cope rearrangement, while highly stereoselective interrupted aromatic Cope rearrangements highlight the formation of chiral compounds through a dearomative process.
Collapse
Affiliation(s)
- Morgane Mando
- Université de Reims Champagne Ardenne, CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, 51097, Reims, France
| | - Fabienne Grellepois
- Université de Reims Champagne Ardenne, CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, 51097, Reims, France
| | - Aurélien Blanc
- Université de Strasbourg, CNRS, Institut de Chimie, UMR 7177, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg, France
| | - Eric Hénon
- Université de Reims Champagne Ardenne, CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, 51097, Reims, France
| | - Emmanuel Riguet
- Université de Reims Champagne Ardenne, CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, 51097, Reims, France
| |
Collapse
|
2
|
Sugitate K, Yamashiro T, Takahashi I, Yamada K, Abe T. Oxytrofalcatin Puzzle: Total Synthesis and Structural Revision of Oxytrofalcatins B and C. J Org Chem 2023. [PMID: 37433109 DOI: 10.1021/acs.joc.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The previously reported structures of oxytrofalcatins B and C possess a benzoyl indole core. However, following synthesis and NMR comparison of both the proposed structure and the synthesized oxazole, we have revised the structure of oxytrofalcatins B and C as oxazoles. The synthetic route developed herein can further our understanding of the biosynthetic pathways that govern the production of natural 2,5-diaryloxazoles.
Collapse
Affiliation(s)
- Kazuma Sugitate
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Ibuki Takahashi
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan
| | - Koji Yamada
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| |
Collapse
|
3
|
Baidilov D, Elkin PK, Athe S, Rawal VH. Rapid Access to 2,2-Disubstituted Indolines via Dearomative Indolic-Claisen Rearrangement: Concise, Enantioselective Total Synthesis of (+)-Hinckdentine A. J Am Chem Soc 2023. [PMID: 37364288 DOI: 10.1021/jacs.3c03611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The construction of 2,2-disubstituted indolines has long presented a synthetic challenge without any general solutions. Herein, we report a robust protocol for the dearomative Meerwein-Eschenmoser-Claisen rearrangement of 3-indolyl alcohols that provides efficient access to 2-substituted and 2,2-disubstituted indolines. These versatile subunits are useful for natural product synthesis and medicinal chemistry. The title [3,3] sigmatropic rearrangement proceeds in generally excellent yield and transfers the C3-indolic alcohol chirality to the C2 position with high fidelity, thus providing a reliable method for the construction of enantioenriched 2,2-disubstituted indolines. The power of this methodology is demonstrated through the concise and strategically unique total synthesis of the marine natural product hinckdentine A, which features a dearomative Claisen rearrangement, a diastereocontrolled hydrogenation of the alkene product, a one-pot amide-to-oxime conversion using Vaska's complex, and a regioselective late-stage tribromination.
Collapse
Affiliation(s)
- Daler Baidilov
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Pavel K Elkin
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Sudhakar Athe
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Viresh H Rawal
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Yamashiro T, Tokushige K, Abe T. One-Pot Synthesis of Core Structure of Shewanelline C Using an Azidoindoline. J Org Chem 2023; 88:3992-3997. [PMID: 36888895 DOI: 10.1021/acs.joc.3c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The unprecedented synthesis of the indolines bearing N3-quinazolin-2,4-dione moiety using an AZIN is reported. The concise synthesis features the tandem Staudinger/chemo-selective aza-Wittig/cyclization sequence of AZINs with isatoic anhydride by a one-pot protocol.
Collapse
Affiliation(s)
- Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Keisuke Tokushige
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 7008530, Japan
| |
Collapse
|
5
|
Wang L, Zhou Y, Su Z, Zhang F, Cao W, Liu X, Feng X. [3,3]-Sigmatropic Rearrangements of Naphthyl 1-Propargyl Ethers: para-Propargylation and Catalytic Asymmetric Dearomatization. Angew Chem Int Ed Engl 2022; 61:e202211785. [PMID: 36317655 DOI: 10.1002/anie.202211785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/06/2022]
Abstract
The para-Claisen rearrangement of aryl 1-propargyl ethers involves two-step [3,3]-sigmatropic rearrangements and dearomatization process, which has high activation barriers and is of challenge. Here we discovered thermal para-Claisen rearrangement of naphthyl 1-propargyl ethers, and it enabled the formation of formal para-C-H propargylation products upon rearomatization. Chirality transfer occurred if optically active propargyl ethers were employed, leading to the construction of aryl/propargyl-containing stereogenic centers. Moreover, catalytic asymmetric dearomatization of naphthyl 1-propargyl ethers with different substitution at para-position gave access to benzocyclohexenones bearing all-carbon quaternary stereocenters. The reaction was accelerated by a chiral N,N'-dioxide/Co(OTf)2 complex catalyst to achieve high yields (up to 98 %) and high enantioselectivities (up to 93 % ee). The DFT calculations and experimental results provided important clues to clarify the para-Claisen rearrangement process as well as the chiral induction and remote delivery.
Collapse
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Wang L, Zhou Y, Su Z, Zhang F, Cao W, Liu X, Feng X. [3,3]‐Sigmatropic Rearrangements of Naphthyl 1‐Propargyl Ethers:
para
‐Propargylation and Catalytic Asymmetric Dearomatization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
7
|
Yamashiro T, Abe T, Sawada D. Synthesis of 2-monosubstituted indolin-3-ones by cine-substitution of 3-azido-2-methoxyindolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the formal cine-substitution/hydrolysis of 3-azidoindole intermediates generated from 3-azido-2-methoxyindolines (AZINs). This protocol enables the introduction of both various carboxylic acid and alcohol into indolin-3-ones at the C2-position,...
Collapse
|
8
|
Abe T, Hirao S. Rapid access to indole-fused bicyclo[2.2.2]octanones by merging the umpolung strategy and molecular iodine as a green catalyst. Org Biomol Chem 2021; 18:4193-4197. [PMID: 32458925 DOI: 10.1039/d0ob01038c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot synthesis of indole-fused bicyclo[2.2.2]octanones from DiMeOIN and 2-cyclohexen-1-one is accomplished under an iodine catalyst. The simple and metal-free conditions provide a practical tool to construct Csp3-rich complex molecules via coupling cyclization.
Collapse
Affiliation(s)
- Takumi Abe
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan.
| | - Seiya Hirao
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Hokkaido 0610293, Japan.
| |
Collapse
|
9
|
Abstract
Reviewed herein is the aromatic Cope rearrangement, a Cope rearrangement where one (or both) of the alkenes of the 1,5-diene are part of a greater aromatic system. While the Cope rearrangement of 1,5-dienes has seen wide utility, variation, and application in chemical synthesis, the aromatic Cope rearrangement, comparatively, has not. This review summarizes the ∼40 papers dating back to 1956 on this topic and is divided into the following sections: (1) introduction, including kinetic and thermodynamic challenges of the aromatic Cope rearrangement, and (2) key substrate features, of which there are four general types: (i) α-allyl-α-aryl malonates (and related substrates), (ii) 1-aryl-2-vinylcyclopropanes, and (iii) anion-accelerated aromatic oxy-Cope substrates, and (iv) the concept of synchronized aromaticity. Ultimately, we hope this review will draw attention to a potentially valuable transformation for arene functionalization that warrants further studies and development.
Collapse
Affiliation(s)
- Breanna M Tomiczek
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, USA.
| | | |
Collapse
|
10
|
Semenova E, Lahtigui O, Ghiviriga I, Grenning AJ. [3,3] Ring Rearrangement of Oxo- or Aza-Bridged Bicyclo[3.2.1]octene-Based 1,5-Dienes. Org Lett 2021; 23:2263-2267. [PMID: 33689388 DOI: 10.1021/acs.orglett.1c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report that oxo- or aza-bridged alkylidenemalononitrile-cycloheptenes undergo a [3,3] ring rearrangement to yield cyclopenta-fused dihydro-furans or pyrroles. Described herein are the origins of the serendipitous discovery, scope studies, and representative functional group interconversion chemistry.
Collapse
Affiliation(s)
- Evgeniya Semenova
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ouidad Lahtigui
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Abe T, Kosaka Y, Kawasaki T, Ohata Y, Yamashiro T, Yamada K. Revisiting 2-Alkoxy-3-bromoindolines: Control C-2 vs. C-3 Elimination for Regioselective Synthesis of Alkoxyindoles. Chem Pharm Bull (Tokyo) 2020; 68:555-558. [DOI: 10.1248/cpb.c20-00135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takumi Abe
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Yuta Kosaka
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Takaaki Kawasaki
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Yuki Ohata
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Toshiki Yamashiro
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Koji Yamada
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
12
|
Abe T, Hirao S, Yamashiro T. A metal-, oxidant-, and fluorous solvent-free synthesis of α-indolylketones enabled by an umpolung strategy. Chem Commun (Camb) 2020; 56:10183-10186. [DOI: 10.1039/d0cc04795c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have developed the first transition metal-, oxidant-, and fluorous solvent-free α-indolization of ketones using ammonium salts and enamines.
Collapse
Affiliation(s)
- Takumi Abe
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Japan
| | - Seiya Hirao
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Japan
| | - Toshiki Yamashiro
- Faculty of Pharmaceutical Sciences
- Health Sciences University of Hokkaido
- Ishikari-tobetsu
- Japan
| |
Collapse
|
13
|
Abe T, Aoyama S, Ohmura M, Taniguchi M, Yamada K. Revisiting Furodiindolines: One-Pot Synthesis of Furodiindolines Using Indole 2,3-Epoxide Surrogates and Their Synthetic Applications. Org Lett 2019; 21:3367-3371. [PMID: 30997809 DOI: 10.1021/acs.orglett.9b01108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Furodiindolines have emerged as versatile intermediates in various transformations, which are easily obtained from indole 2,3-epoxide surrogates via a one-pot procedure and allowed access to heterocyclic compounds with structural diversity and complexity. Four types of transformations from the furodiindolines have been achieved: (i) dehydrative rearrangement to afford 2,3'-biindoles, (ii) hydrolysis/cyclization to give 3,4-disubstituted quinolines, (iii) ring-opening/cyclization to give pyrroloindolines, and (iv) aminal cleavage to give a 3,3-disubstituted 2-oxindole.
Collapse
Affiliation(s)
- Takumi Abe
- Faculty of Pharmaceutical Sciences , Health Sciences University of Hokkaido , Ishikari-tobetsu, Hokkaido 0610293 , Japan
| | - Sakura Aoyama
- Faculty of Pharmaceutical Sciences , Health Sciences University of Hokkaido , Ishikari-tobetsu, Hokkaido 0610293 , Japan
| | - Masami Ohmura
- Faculty of Pharmaceutical Sciences , Health Sciences University of Hokkaido , Ishikari-tobetsu, Hokkaido 0610293 , Japan
| | - Masato Taniguchi
- Faculty of Pharmaceutical Sciences , Health Sciences University of Hokkaido , Ishikari-tobetsu, Hokkaido 0610293 , Japan
| | - Koji Yamada
- Faculty of Pharmaceutical Sciences , Health Sciences University of Hokkaido , Ishikari-tobetsu, Hokkaido 0610293 , Japan
| |
Collapse
|