1
|
Yi LN, Bu J, Zhao T, Huang M, Yang Q. Efficient C(sp 3)-P(V) bond cleavage and reconstruction of free α-aminophosphonates via palladium catalysis. Chem Commun (Camb) 2024; 60:11512-11515. [PMID: 39308398 DOI: 10.1039/d4cc03702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Transition metal-catalyzed cleavage and reconstruction of the C-P bond provides a highly efficient and rapid method for the transformation of organophosphine compounds. In this study, a novel and general protocol for the palladium-catalyzed C(sp3)-P(V) bond cleavage of free α-aminophosphonates and subsequent functionalization via C-P bond recombination has been developed. The reaction exhibits high reactivity between the C(sp3)-P bond and halides, accommodating a wide range of substrates and enabling the rapid synthesis of aryl, alkenyl, and alkyl organophosphine molecules. Additionally, the synthetic utility is validated by gram-scale synthesis, and the reaction process is corroborated by mechanistic experiments.
Collapse
Affiliation(s)
- Li-Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Jinghan Bu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Tao Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Mengyi Huang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
Zhu L, Zhu PW, Hu LY, Lin SY, Wu L, Zhu J. Electrochemically Enabled Hydroxyphosphorylation of 1,3-Enynes to Access Phosphinyl-Substituted Propargyl Alcohols. J Org Chem 2024; 89:10796-10804. [PMID: 39030172 DOI: 10.1021/acs.joc.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Catalytic difunctionalization with the direct activation of (O)P-H bonds has been recently established as a potentially robust platform to generate valuable organophosphorus compounds. In terms of 1,3-enynes, despite of the various catalytic methods developed for hydrophosphorylation, the radical-mediated hetero-functionalization of two different atoms has been less explored. In this study, we disclosed an electrochemically induced hydroxyphosphorylation of 1,3-enynes for the construction of phosphinyl-substituted propargyl alcohols. The system involves the direct activation of both arylphosphine oxides and oxygen in ambient air with no external metal or additive needed. The use of electrochemistry ensures the regioselective, atom-economic and eco-friendly for the difunctionalization process. This strategy highlights the advantages of mild reaction conditions, readily available starting materials and broad substrate scope, showing its practical synthetic value in organic synthesis.
Collapse
Affiliation(s)
- Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
- SINOPEC Jinling Company, NanJing 210033, P. R. China
| | - Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shao-Yan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
3
|
Zhang SY, Li Z, Hu LY, Li JT, Wu L. Access Polyarylbipyrazoles via Palladium-Catalysis and Visible-Light-Driven C(sp 3)-P(V) Cleavage Relay Strategy. Org Lett 2024; 26:2949-2954. [PMID: 38598254 DOI: 10.1021/acs.orglett.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
An unprecedented palladium-catalyzed and visible-light-driven relay reaction of allenylphosphine oxide with in situ generated nitrile imines is presented for the direct synthesis of highly valuable polyarylbipyrazole skeletons. This one-pot strategy involves double 1,3-dipolar cycloaddition and C(sp3)-P(V) bond cleavage under photocatalyst-free and mild reaction conditions. The approach features simple operation, a high step economy, and a broad substrate scope, affording the corresponding products in moderate to excellent yields.
Collapse
Affiliation(s)
- Shen-Yuan Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, Peoples's Republic of China
| | - Zhi Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, Peoples's Republic of China
| | - Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, Peoples's Republic of China
| | - Jin-Tao Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, Peoples's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, Peoples's Republic of China
| |
Collapse
|
4
|
Li Y, Shen J, Shen Y, Li Y, Luo K, Wu L. Tandem S N2 Nucleophilic Substitution/Phospho-Dieckmann Reaction: One-Step Synthesis of 2-Phosphonyl-3-hydroxybenzo[ b]thiophenes. J Org Chem 2023; 88:13967-13976. [PMID: 37733950 DOI: 10.1021/acs.joc.3c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A novel and efficient tandem SN2 nucleophilic substitution/Dieckmann condensation reaction of α-iodomethyl phosphine oxide with methyl thiosalicylate derivatives has been developed by using NaOH as a base, which enables the expeditious synthesis of 2-phosphonyl-3-hydroxybenzo[b]thiophene derivatives in moderate to high yields under simple conditions. This research provides not only a convenient method for the functionalization of benzo[b]thiophenes at the 2-position and 3-position but also new organophosphorus molecules. Furthermore, several new phosphonyl-substituted benzo[b]thiophenes were obtained from the resultant 2-phosphonyl-3-hydroxybenzo[b]thiophenes.
Collapse
Affiliation(s)
- Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiamei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yawei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Yang B, Yan S, Li C, Ma H, Feng F, Zhang Y, Huang W. Mn(iii)-mediated C-P bond activation of diphosphines: toward a highly emissive phosphahelicene cation scaffold and modulated circularly polarized luminescence. Chem Sci 2023; 14:10446-10457. [PMID: 37799992 PMCID: PMC10548521 DOI: 10.1039/d3sc03201a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Transition metal mediated C-X (X = H, halogen) bond activation provides an impressive protocol for building polyaromatic hydrocarbons (PAHs) in C-C bond coupling and annulation; however, mimicking both the reaction model and Lewis acid mediator simultaneously in a hetero-PAH system for selective C-P bond cleavage faces unsolved challenges. At present, developing the C-P bond activation protocol of the phosphonic backbone using noble-metal complexes is a predominant passway for the construction of phosphine catalysts and P-center redox-dependent photoelectric semiconductors, but non-noble metal triggered methods are still elusive. Herein, we report Mn(iii)-mediated C-P bond activation and intramolecular cyclization of diphosphines by a redox-directed radical phosphonium process, generating phosphahelicene cations or phosphoniums with nice regioselectivity and substrate universality under mild conditions. Experiments and theoretical calculations revealed the existence of the unusual radical mechanism and electron-deficient character of novel phosphahelicenes. These rigid quaternary bonding skeletons facilitated versatile fluorescence with good tunability and excellent efficiency. Moreover, the enantiomerically enriched crystals of phosphahelicenes emitted intense circularly polarized luminescence (CPL). Notably, the modulated CPL of racemic phosphahelicenes was induced by chiral transmission in the cholesteric mesophase, showing ultrahigh asymmetry factors of CPL (+0.51, -0.48). Our findings provide a new approach for the design of emissive phosphahelicenes towards chiral emitters and synthesized precursors.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610000 P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51805 P. R. China
| |
Collapse
|
6
|
Li Y, Zhang SY, Yan XL, Zhu J, Luo K, Wu L. Visible-Light-Induced Palladium-Catalyzed Construction of Polyarylfuran Skeletons via Cascade Aryl Radical Cyclization and C(sp 3)-P(V) Bond Cleavage. Org Lett 2023. [PMID: 37338141 DOI: 10.1021/acs.orglett.3c01680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Herein, a novel and expedient method was established for the synthesis of polyarylfuran derivatives. The coupling of allenylphosphine oxide and bromophenol or bromonaphthol enabled by visible light and palladium catalysis directly furnishes polyarylfuran skeletons, which involves a radical tandem cyclization and cascade C(sp3)-P(V) bond cleavage. This protocol features easy operation, a broad substrate scope, and a high step economy, affording polyarylfurans in moderate to good yields.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen-Yuan Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiao-Long Yan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
7
|
Xia YT, Li YX, Bi TT, Lian W, Wang X, Yan M, Guo T. Substituents Regulate the Cyclization of Conjugated Alkynes to Accurately Construct Cyclo-( E)-[3]dendralenes. Molecules 2023; 28:molecules28114382. [PMID: 37298858 DOI: 10.3390/molecules28114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Substituent-regulated cyclization of conjugated alkynes with acid catalysis was developed in this paper, and it provides a straightforward synthesis of cyclic-(E)-[3]dendralenes. Depending on the electronic effect of the aromatic ring pairing, a variety of phosphinyl quintuplet/hexa cyclo-[3]dendralenes with diverse substitution patterns are accessible, with good efficiency and high stereoselectivity. This self-cyclization process achieves the first precise construction of a phosphinylcyclo-(E)-[3]dendralene from conjugated alkynes to aromatization.
Collapse
Affiliation(s)
- Yun-Tao Xia
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Ya-Xin Li
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Tong-Tong Bi
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Wei Lian
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Xia Wang
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Meng Yan
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Tao Guo
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| |
Collapse
|
8
|
Zhu PW, Ma HM, Li Y, Miao LZ, Zhu J. Electro-Triggered Cascade Cyclization to Access Phosphinyl-Substituted N-Containing Heterocycles. J Org Chem 2023; 88:2069-2078. [PMID: 36701209 DOI: 10.1021/acs.joc.2c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An electro-triggered cascade cyclization strategy was disclosed with concomitant phosphinylation and N-heterocycle construction. It provides a novel and environmentally friendly approach to access phosphinyl-substituted N-heterocycles with no external metal catalyst, oxidant, or heating. Mechanistic studies have revealed that anodic oxidation of H-phosphorus compounds occurs first to generate the key P-centered radical directly and cathodic reduction leads to the concurrent release of molecular hydrogen or methane. This protocol features simple operation, broad substrate scope, clean and mild conditions, and atom and step economy to form heterocycle-containing organophosphorus scaffolds.
Collapse
Affiliation(s)
- Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Hong-Mei Ma
- Laboratory and Research Base Management, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ling-Zhen Miao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
9
|
Xie XY, Xu YF, Li Y, Wang XD, Zhu J, Wu L. Radical modulated regioselective difunctionalization of vinyl enynes: tunable access to naphthalen-1(2 H)-ones and allenic alcohols. Chem Commun (Camb) 2022; 58:3031-3034. [PMID: 35156673 DOI: 10.1039/d1cc06994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient radical-modulated difunctionalization of vinyl enynes has been disclosed using TEMPO as a radical regulator. Facile access to structurally diverse 3-bromo-naphthalen-1(2H)-ones and 4-bromo-allenic alcohols was realized via 1,2-addition/1,2-migration or 1,4-addition, respectively. This protocol represents the first example of radical-modulated metal-free difunctionalization of 1,3-enynes with high regioselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun-Fang Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. .,College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P. R. China
| |
Collapse
|
10
|
Sako M, Kanomata K, Salem MSH, Furukawa T, Sasai H, Takizawa S. Metal-free C(aryl)–P bond cleavage: Experimental and computational studies of the Michael addition/aryl migration of triarylphosphines to alkenyl esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00028h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nucleophilic addition and aryl migration of triarylphosphines to alkynyl esters in the presence of water results in the formation of 3-(diarylphosphoryl)-3-aryl propanoic acid derivatives through a metal-free C(aryl)–P bond...
Collapse
|
11
|
Li TT, Lu WY, Shen LW, Wang ZH, Zhao JQ, You Y, Yuan WC. CuI-catalyzed decarboxylative highly regioselective phosphonylation of terminal alkyne-substituted cyclic carbonates/carbamates to access 4-phosphonyl 2,3-allenols/2,3-allenamines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Electrochemical Oxidative C H Phosphonylation of thiazole derivatives in ambient conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Luo K, Li Y, Fu Z, Zhang L, Wang Z, Xu J, Yu B, Wu L. Transition‐Metal‐Free Cascade Enyne Rearrangement and Cyclopropanation of Allenylphosphine Oxides with
N
‐Tosylhydrazones Accessing Alkynylcyclopropane Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Zitong Fu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ling Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Zhipeng Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jiangyan Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Bingjun Yu
- Lab of Plant Stress Biology, College of Life Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences Nanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Chemical Engineering Xinjiang Agricultural University Urumqi 830052 People's Republic of China
| |
Collapse
|
14
|
Xie X, Li Y, Xia Y, Luo K, Wu L. Visible Light‐Induced Metal‐Free and Oxidant‐Free Radical Cyclization of (2‐Isocyanoaryl)(methyl)sulfanes with Ethers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao‐Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yun‐Tao Xia
- School of Chemistry & Chemical Engineering Henan University of Technology Zhengzhou 450001 P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
- College of Chemical Engineering Xinjiang Agricultural University Urumqi 830052 P. R. China
| |
Collapse
|
15
|
Li C, Wang J, Yang SD. Visible-light-facilitated P-center radical addition to C[double bond, length as m-dash]X (X = C, N) bonds results in cyclizations. Chem Commun (Camb) 2021; 57:7997-8002. [PMID: 34319325 DOI: 10.1039/d1cc02604f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light-facilitated phosphorus radical reactions have been developed as a powerful and sustainable tool for the synthesis of various organophosphorus compounds. In general, these reactions require stoichiometric amounts of oxidants, and reductants, bases, and radical initiators, leading to uneconomical and complicated processes. Progress has been made over the past few years toward using reactions that proceed under eco-benign and mild reaction conditions. Furthermore, these reactions have broad functional group tolerance, with some facile and economical pathways. Herein, we summarize the discoveries and achievements pertaining to C-P bond formation through a visible light photocatalysis procedure with high atom economy, made by our group and other research groups. It was established that greener and more environmentally friendly approaches do not require an additional oxidant or base. Moreover, we have designed and synthesized a new type of P-radical precursor, which can take part in reactions without the requirement for any additional bases, oxidants, and additives. This breakthrough, pertaining to novel visible-light-induced transformations, will be discussed and a plausible mechanism is proposed, based on corresponding experiments and the literature.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | |
Collapse
|
16
|
Zhang CY, Zhu J, Cui SH, Xie XY, Wang XD, Wu L. Visible-Light-Induced 1,4-Hydroxysulfonylation of Vinyl Enynes with Sulfonyl Chlorides: The Bridge of Chloride Linking Water and Enynes. Org Lett 2021; 23:3530-3535. [PMID: 33881322 DOI: 10.1021/acs.orglett.1c00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel visible-light-induced 1,4-hydroxysulfonylation of vinyl enynes with sulfonyl chlorides has been established, providing a highly efficient protocol to access multisubstituted sulfonyl allenic alcohols. Control experiments and mechanistic studies disclose that the target products result from sequential reactions of hydroxyl and tosyl radicals, among which chloride anion plays a key role to generate the requisite •OH, thus bridging water and enynes. Moreover, the vinyl pendant is believed to decisively affect the site-selectivity of hydroxyl radical.
Collapse
Affiliation(s)
- Cheng-Yun Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Su-Hang Cui
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China.,College of Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P.R. China
| |
Collapse
|
17
|
Liu J, Wei Y, Shi M. Mechanistic Studies on Propargyl
Alcohol‐Tethered
Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen Guangdong 518000 China
| |
Collapse
|
18
|
Abstract
This review summarizes the visible light mediated strategies for the functionalization of allenes.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
19
|
Ma C, Feng Z, Li J, Zhang D, Li W, Jiang Y, Yu B. Photocatalytic transition-metal-free direct 3-alkylation of 2-aryl-2 H-indazoles in dimethyl carbonate. Org Chem Front 2021. [DOI: 10.1039/d1qo00064k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general transition-metal-free photocatalytic decarboxylative 3-alkylation reaction of 2-aryl-2H-indazoles was developed under visible-light irradiation under mild conditions.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Zhiwen Feng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Dandan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Wei Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials
| | - Bing Yu
- Green Catalysis Centre
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
20
|
|
21
|
Gao F, Sun K, Chen XL, Shi T, Li XY, Qu LB, Zhao YF, Yu B. Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. J Org Chem 2020; 85:14744-14752. [PMID: 33136392 DOI: 10.1021/acs.joc.0c02107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal-free and base-free procedure for the phosphorylation of imidazo[1,2-a]pyridines with phosphine oxides under the irradiation of visible light at room temperature in green solvent was reported, featuring mild and sustainable conditions, convenient operation, as well as good functional group compatibility.
Collapse
Affiliation(s)
- Fan Gao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Tao Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Yun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yu-Fen Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China.,Institute Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
22
|
Niu Y, Bai P, Lou Q, Yang S. Generation of a Key Synthon of Indole Alkaloid Synthesis by Palladium(II)‐Catalyzed Indole 2‐Methylenephosphorylation. ChemCatChem 2020. [DOI: 10.1002/cctc.202000415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Niu
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Peng‐Bo Bai
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Qin‐Xin Lou
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Shang‐Dong Yang
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
23
|
Zhang M, Lan H, Li N, Zhong Q, Zhu H, Liu C, Zhao H. Photocatalyst-Free Singlet Oxygen-Induced Oxygenation: A Strategy for the Preparation of 5-Cyano-2-pyridones Driven by Blue-Light Irradiation. J Org Chem 2020; 85:8279-8286. [DOI: 10.1021/acs.joc.0c00963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P. R. China
| | - Hanyang Lan
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P. R. China
| | - Nan Li
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P. R. China
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P. R. China
| | - Hao Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P. R. China
| | - Chunyan Liu
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, P. R. China
| | - Hongwu Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
24
|
Sun X, Liu T, Yang Y, Gu Y, Liu Y, Ji Y, Luo K, Zhu J, Wu L. Visible‐Light‐Promoted Regio‐ and Stereoselective Oxyalkenyl‐ation of Phosphinyl Allenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Sun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Teng Liu
- College of Chemistry and Material ScienceShandong Agricultural University, Taian Shandong 271018 People's Republic of China
| | - Yan‐Tong Yang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yue‐Jie Gu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yu‐Wei Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yi‐Gang Ji
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and ChemistryJiangsu Second Normal University Nanjing 210013 People's Republic of China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
25
|
Zeng F, Sun K, Chen X, Yuan X, He S, Liu Y, Peng Y, Qu L, Lv Q, Yu B. Metal‐Free Visible‐Light Promoted Radical Cyclization to Access Perfluoroalkyl‐Substituted Benzimidazo[2,1‐
a
]isoquinolin‐6(5
H
)‐ones and Indolo[2,1‐
a
]isoquinolin‐6(5
H
)‐ones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901016] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fan‐Lin Zeng
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Xiao‐Lan Chen
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Xiao‐Ya Yuan
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Shuai‐Qi He
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Yan Liu
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
- College of Biological and Pharmaceutical EngineeringXinyang Agriculture & Forestry University Xinyang 464000 People's Republic of China
| | - Yu‐Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and Technology Changsha 410114 People's Republic of China
| | - Ling‐Bo Qu
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Qi‐Yan Lv
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| | - Bing Yu
- College of Chemistry, School of Life SciencesZhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
26
|
Luo K, Yang WC, Wei K, Liu Y, Wang JK, Wu L. Di-tert-butyl Peroxide-Mediated Radical C(sp2/sp3)–S Bond Cleavage and Group-Transfer Cyclization. Org Lett 2019; 21:7851-7856. [DOI: 10.1021/acs.orglett.9b02837] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Chao Yang
- Institute of Pesticide, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kai Wei
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun-Ke Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Liu T, Zhu J, Sun X, Cheng L, Wu L. I
2
/TBHP Mediated Divergent C(sp
2
)‐P Cleavage of Allenylphosphine Oxides: Substituent‐Controlled Regioselectivity. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teng Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Xue Sun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
| |
Collapse
|
28
|
Xia YT, Wu JJ, Zhang CY, Mao M, Ji YG, Wu L. Cascade Alkynylation and Highly Selective Hydrogenation Catalyzed by Binaphthyl-Palladium Nanoparticles Accessing Phosphinyl (Z)-[3]Dendralenes. Org Lett 2019; 21:6383-6387. [PMID: 31356086 DOI: 10.1021/acs.orglett.9b02287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yun-Tao Xia
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Jin Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng-Yun Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao Mao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Gang Ji
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|