1
|
Xu S, Sun Z, Zheng J, Jin R, Li P, Xie F, Ci C, Li B. Recyclable Porous Organic Polymer-Supported Single-Atom Ruthenium Catalyst for Strong Si-F Bond Activation: Catalytic Si-F/Si-H and Si-F/Si-O Cross-Coupling Reactions. Org Lett 2025; 27:3703-3708. [PMID: 40170500 DOI: 10.1021/acs.orglett.5c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Developing efficient methods for strong Si-F σ-bond activation is very important in organosilicon chemistry. We report the preparation of a novel porous organic polymer (POP)-supported single-atom Ru catalyst (POPs-Ru SACs) that was successfully applied in catalytic strong Si-F/Si-H and Si-F/Si-O cross-coupling reactions. Various disiloxanes with functional group tolerance were produced under mild conditions. Furthermore, the POPs-Ru SACs catalyst exhibited excellent recyclability for Si-F and Si-H cross-coupling reactions. Density functional theory calculations were performed to verify the mechanism of POPs-Ru SACs-catalyzed Si-F/Si-H cross-coupling reactions.
Collapse
Affiliation(s)
- Shanshan Xu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Zhenning Sun
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Juanjuan Zheng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Ruxin Jin
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Ping Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Feng Xie
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Chenggang Ci
- Key Laboratory of Computational Catalytic Chemistry of Guizhou Province, University Science and Technology Park of Qiannan Normal University for Nationalities, Department of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, P. R. China
| | - Bin Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong, China
- Key Laboratory of Computational Catalytic Chemistry of Guizhou Province, University Science and Technology Park of Qiannan Normal University for Nationalities, Department of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, P. R. China
| |
Collapse
|
2
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
3
|
Li J, Xu S, Liang J, Zheng J, Li P, Wang J, Li B. Ruthenium-Catalyzed Sequential Hydrosilylation/Dehydrogenation and C-H Silylation: Synthesis of Six-Membered Indole Silacycles and Pyrrole Silyl Ether Cycles. Org Lett 2024; 26:6142-6147. [PMID: 38995672 DOI: 10.1021/acs.orglett.4c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Selective dehydrogenative C-H silylation is one of the most powerful tools to synthesize silacycles. Herein, we developed Ru-catalyzed sequential hydrosilylation/C-H silylation of allyl-indoles and dehydrogenative O-H/C-H silylation of pyrrole phenols. Both six-membered indole silacycles and pyrrole silyl ether cycles were successfully synthesized with good functional group tolerance. Furthermore, the RuHCl(CO)(PPh3)3 catalyst exhibited high reaction compatibility in hydrosilylation of alkene, dehydrogenative O-H silylation, and C-H silylation.
Collapse
Affiliation(s)
- Jiefang Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Shanshan Xu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jieyu Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Juanjuan Zheng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ping Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of People's Republic of China
| | - Bin Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong 515200, People's Republic of China
| |
Collapse
|
4
|
Liang M, Yan S, Xu Y, Ma C, Zhang X, Fan X. Synthesis of CF 3-Isoquinolinones and Imidazole-Fused CF 3-Isoquinolinones Based on C-H Activation-Initiated Cascade Reactions of 2-Aryloxazolines. J Org Chem 2024; 89:10180-10196. [PMID: 38963050 DOI: 10.1021/acs.joc.4c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Presented herein are novel syntheses of CF3-isoquinolinones and imidazole fused CF3-isoquinolinones based on the cascade reactions of 2-aryloxazolines with trifluoromethyl imidoyl sulfoxonium ylides. The formation of CF3-isoquinolinone involves an intriguing cascade process including oxazolinyl group-assisted aryl alkylation through C(sp2)-H bond metalation, carbene formation, migratory insertion, and proto-demetalation followed by intramolecular condensation and water-promoted oxazolinyl ring-scission. With this method, the isoquinolinone scaffold tethered with valuable functional groups was effectively constructed. By taking advantage of the functional groups embedded therein, the products thus obtained could be readily transformed into imidazole-fused CF3-isoquinolinones or coupled with some clinical drugs to furnish hybrid compounds with potential applications in drug development. In general, the developed protocols feature expeditious and convenient formation of valuable CF3-heterocyclic skeletons, broad substrate scope, and ready scalability. In addition, studies on the activity of selected products against some human cancer cell lines demonstrated their potential as lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Miaomiao Liang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengnan Yan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuanshuang Xu
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chunhua Ma
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xinying Zhang
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xuesen Fan
- Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Huang Z, Xian J, Lv S, Xu S, Li J, Xie F, Li B. Porous Organic Polymer Supported Nano Ruthenium Catalysts for Cascade Aromatization of Quinoxalin-2(1 H)-one and C-H Annulation with Alkynes. Org Lett 2023; 25:7974-7978. [PMID: 37905545 DOI: 10.1021/acs.orglett.3c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Selective C-H annulation with alkynes is one of the most useful tools to synthesize heterocycles. Herein, we developed novel porous organic polymers supported ruthenium (POPs-Ru) as highly efficient catalysts for cascade aromatization of quinoxalin-2(1H)-one and C-H annulation with alkynes. Both terminal and internal alkynes were successfully transferred to furo[2,3-b]quinoxaline derivatives with good functional group tolerance and high regioselectivity by using POPs-Ru catalysts. Furthermore, the catalyst exhibited high activity and could be reused at least five times without obvious deactivation of this coupling reaction. This study offers an important platform for the immobilization of molecular metal catalysts for C-H functionalization.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiayi Xian
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Shanshan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiefang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
6
|
Huang Z, Lin Q, Li J, Xu S, Lv S, Xie F, Wang J, Li B. Ruthenium-Catalyzed Dehydrogenative Intermolecular O-H/Si-H/C-H Silylation: Synthesis of ( E)-Alkenyl Silyl-Ether and Silyl-Ether Heterocycle. Molecules 2023; 28:7186. [PMID: 37894665 PMCID: PMC10609488 DOI: 10.3390/molecules28207186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Selective dehydrogenative silylation is one of the most valuable tools for synthesizing organosilicon compounds. In this study, a regio- and stereoselective ruthenium-catalyzed dehydrogenative intermolecular silylation was firstly developed to access (E)-alkenyl silyl-ether derivatives and silyl-ether heterocycles with good functional group tolerance. Furthermore, two pathways for RuH2(CO)(PPh3)3/NBE-catalyzed dehydrogenative intermolecular silylation of alcohols and alkenes as well as intermolecular silylation of naphthol derivatives were investigated with H2SiEt2 as the hydrosilane reagent.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Wamo New Material Technology Co., Ltd., Jiangmen 529020, China
| | - Qiao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jiefang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shanshan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
7
|
Manguin R, Galiana-Cameo M, Kittikool T, Barthes C, Thongpaen J, Bancal E, Mallet-Ladeira S, Yotphan S, Castarlenas R, Mauduit M, Sortais JB, Baslé O. Iridium(I) complexes with bidentate NHC ligands as catalysts for dehydrogenative directed C-H silylation. Chem Commun (Camb) 2023; 59:4193-4196. [PMID: 36942515 DOI: 10.1039/d2cc06865f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
A series of (NHC)(cod)Ir(I) complexes bearing NHC-carboxylate ligands were efficiently synthesized and fully characterized. Their solid-state structures confirmed the bidentate coordination mode of these LX-type NHC ligands. These unprecedented iridium(I) complexes demonstrated efficient catalytic activities in dehydrogenative directed C-H silylation of arenes, and allowed for excellent ortho-selectivity control with aromatic silylating agents.
Collapse
Affiliation(s)
- Romane Manguin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France
| | - María Galiana-Cameo
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH),Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, CP, 50009, Zaragoza, Spain
| | - Tanakorn Kittikool
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jompol Thongpaen
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France
| | - Etienne Bancal
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Sonia Mallet-Ladeira
- Université de Toulouse, UPS, Institut de Chimie de Toulouse, FR2599, 118 Route de Narbonne, F-31062, Toulouse, France
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Ricardo Castarlenas
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH),Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, CP, 50009, Zaragoza, Spain
| | - Marc Mauduit
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France
| | | | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Yang J, Liu B, Chang J. Ru(II)-Catalyzed One-Pot Synthesis of 1,2-Hydropyridines via a Three-Component Reaction. Org Lett 2023; 25:1476-1480. [PMID: 36856311 DOI: 10.1021/acs.orglett.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A ruthenium(II)-catalyzed one-pot synthesis of highly substituted 1,2-dihydropyridines (DHPs) via a three-component reaction system has been realized. The reaction is conducted using a simple Ru(II) catalyst without the addition of specific ligands. The catalytic system exhibits good functionality tolerance with a wide range of starting materials. The DHPs obtained can be easily converted into tetrahydropyridines and azabicyclo[4.2.0]octa-4,7-dienes by subsequent reduction or [2 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Juntao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Som S, Choi J, Katsoulis D, Lee KL. A direct method to access various functional arylalkoxysilanes by Rh-catalysed intermolecular C–H silylation of alkoxysilanes. Chem Sci 2022; 13:10759-10764. [PMID: 36320708 PMCID: PMC9491085 DOI: 10.1039/d2sc03727k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Efficient protocols for intermolecular C–H silylations of unactivated arenes and heteroarenes with HMe2SiOEt are disclosed. The silylations are catalysed by a Rh-complex (0.5 mol%) derived from commercially available [Rh(coe)2Cl]2 and (S,S)-Ph-BPE in the presence of cyclohexene at 100 °C, furnishing desired arylethoxydimethylsilanes up to 99% yield. The regioselectivity is mainly affected by the steric bulk of the substituents in arenes and by electronic effects as an ancillary factor. Mechanistic study revealed that the mono-hydrido dimeric Rh-complex, [Rh2(Ph-BPE)2(μ-H)(μ-Cl)], is an active catalytic intermediate, which further suppresses the formation of redistribution byproducts in the silylation. Preliminary results show that the current protocol can be extended to double C–H silylations affording bis-silylated arenes and is applicable to the silylation of HMeSi(OEt)2 to deliver the corresponding (aryl)SiMe(OEt)2. The control of alkoxysilane redistribution enables the direct access of functional arylalkoxysilanes by Rh-catalyzed C–H silylations.![]()
Collapse
Affiliation(s)
- Salina Som
- University of Central Florida, Department of Chemistry, 4111 Libra Drive, PSB #255, Orlando, FL, USA 32816
| | - Jongwook Choi
- Dow Chemical Company, 2200 West Salzburg Road, Auburn, MI, USA 48611
| | | | - Kangsang L. Lee
- University of Central Florida, Department of Chemistry, 4111 Libra Drive, PSB #255, Orlando, FL, USA 32816
| |
Collapse
|
10
|
Lin S, Sheng X, Zhang X, Liu H, Luo C, Hou S, Li B, Chen X, Li Y, Xie F. Layered Double Hydroxides as Reusable Catalysts for Cyclocondensation of Amidines and Aminoalcohols: Access to Multi-functionalized Oxazolines. J Org Chem 2021; 87:1366-1376. [PMID: 34964647 DOI: 10.1021/acs.joc.1c02696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient catalytic protocol based on reusable MgAl-layered double hydroxides has been developed for the synthesis of multi-functionalized oxazolines via the cyclocondensation of amidines and aminoalcohols. The developed method has a broad substrate scope and excellent functional group tolerance and uses a reusable catalyst. The catalyst can be conveniently recycled by filtration and reused for at least five times without obvious deactivation. Additionally, the selective ortho C-H silylation of oxazolines was performed using Ru(II) as the catalyst and triethyl silane as the silylating reagent, which proved to be a convenient and practical method for the synthesis of versatile organosilyl-functionalized oxazolines with advantageous biological and physical properties.
Collapse
Affiliation(s)
- Shizhuo Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xing Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiangyu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Haibo Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chujun Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Shuaishuai Hou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
11
|
Neil B, Lucien F, Fensterbank L, Chauvier C. Transition-Metal-Free Silylation of Unactivated C(sp 2)–H Bonds with tert-Butyl-Substituted Silyldiazenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Baptiste Neil
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75252 CEDEX 05 Paris, France
| | - Franck Lucien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75252 CEDEX 05 Paris, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75252 CEDEX 05 Paris, France
| | - Clément Chauvier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75252 CEDEX 05 Paris, France
| |
Collapse
|
12
|
Zhang J, Liu S, Zhang T, Liu T, Lan Y. Oxidation of Pd(II) with disilane in a palladium-catalyzed disilylation of aryl halides: a theoretical view. Dalton Trans 2021; 50:7656-7666. [PMID: 33973588 DOI: 10.1039/d1dt00399b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Density functional theory (DFT) calculation has been used to reveal the mechanism of the Pd-catalyzed disilylation reaction of aryl halides. The DFT calculations indicate that the reaction starts with the oxidative addition of the C-I bond to the Pd(0) catalyst. Concerted metalation-deprotonation (CMD) can then generate a five-membered palladacycle. Insertion of Pd(ii) into the Si-Si bond in disilane followed by two sequential steps of reductive eliminations yields the disilylation product and regenerates the Pd(0) catalyst. According to the NPA charge analysis along the reaction coordinates, the formal oxidative addition of the Si-Si bond to palladium could be considered as the insertion of palladium into the Si-Si bond. However, the conventional oxidative addition of the C-I bond to palladium is exactly an oxidation process with the electron transfer from the palladium atom to the C-I bond. Therefore, electron rich Pd(0) is beneficial for the oxidation process, and Pd(ii) prone to acquire electrons is beneficial for the insertion process.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China.
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China.
| | - Tao Zhang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou, Henan 450001, China
| | - Tao Liu
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China.
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China. and Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou, Henan 450001, China
| |
Collapse
|
13
|
You L, Yuan W, He C. Intermolecular Dehydrogenative C−H/Si−H Cross‐Coupling for the Synthesis of Arylbenzyl Bis(silanes). European J Org Chem 2021. [DOI: 10.1002/ejoc.202100474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology 518055 Shenzhen Guangdong China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology 518055 Shenzhen Guangdong China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology 518055 Shenzhen Guangdong China
| |
Collapse
|
14
|
Abstract
Metal-catalyzed activations of inert sp3C–H bonds have recently brought a revolution in the synthesis of useful molecules and molecular materials, due to the interest of the formed sp3C–SiR3 silanes, stable organometallic species, and for further functionalizations that sp3C–H bonds cannot reach directly.
Collapse
Affiliation(s)
- Bin Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Pierre H. Dixneuf
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
15
|
Bozzini LA, Santos TD, Murie VE, de Mello MBM, Vessecchi R, Clososki GC. Regioselective Functionalization of Ester-, Amide-, Carbonate-, and Carbamate-Substituted 2-Phenyl-2-oxazolines with Mixed Lithium-Magnesium Amides. J Org Chem 2021; 86:1204-1215. [PMID: 33296214 DOI: 10.1021/acs.joc.0c02369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have prepared novel highly functionalized benzene derivatives by regioselective metalation of ester-, amide-, carbamate-, and carbonate-substituted 2-phenyl-2-oxazolines with mixed lithium-magnesium amides followed by reaction with different electrophiles. While a complementary metalation site can be accessed by using different bases, steric and electronic effects promoted by the aromatic ring substituents also play an important role in reaction regioselectivity. Computational calculations of the aromatic hydrogen pKa values have helped us to rationalize the metalation preference by the complex-induced proximity effect concept.
Collapse
Affiliation(s)
- Leandro A Bozzini
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Thiago Dos Santos
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Valter E Murie
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Murilo B M de Mello
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes 3900, Ribeirão Preto-SP 14090-901, Brazil
| | - Giuliano C Clososki
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| |
Collapse
|
16
|
Lin Q, Lin Z, Pan M, Zheng Q, Li H, Chen X, Darcel C, Dixneuf PH, Li B. Alkenes as hydrogen trappers to control the regio-selective ruthenium(ii) catalyzed ortho C–H silylation of amides and anilides. Org Chem Front 2021. [DOI: 10.1039/d0qo01031f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and practical pathway to versatile silylated amides and anilides is described via efficient and selective ruthenium(ii) catalyzed ortho C–H silylation with different alkenes as the hydrogen acceptors.
Collapse
Affiliation(s)
- Qiao Lin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Zirui Lin
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Mingxing Pan
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Qiaojin Zheng
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Hui Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
| | - Christophe Darcel
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes)
- F-35000 Rennes
- France
| | - Pierre H. Dixneuf
- Univ. Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes)
- F-35000 Rennes
- France
| | - Bin Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P.R. China
- Univ. Rennes
| |
Collapse
|
17
|
Wu LJ, Teng F, Lv GF, Li JH. Relay Palladium/Copper Catalysis Enabled Silylative [5 + 1] Benzannulation Using Terminal Alkynes as One-Carbon Units. Org Lett 2020; 22:8544-8549. [PMID: 33075230 DOI: 10.1021/acs.orglett.0c03144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using terminal alkyne as a nontraditional one-carbon (C1) unit and silylborane as an external silicon pronucleophile, a relay palladium/copper-catalyzed silylative [5 + 1] benzannulation of 3-acetoxy-1,4-enynes for producing polysubstituted arylsilanes, especially including bioactive motif-based analogues, in a single reaction step through benzene ring skeleton assembly and silyl intermolecular incorporation cascades is developed. Mechanistic studies show that this reaction allows the terminal sp-hybridized carbon atom in terminal alkynes as a C1 unit via cleavage of two π-bonds and one C(sp)-H bond.
Collapse
Affiliation(s)
- Li-Jun Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Idris MA, Lee S. Palladium-Catalyzed Amide N–C Hiyama Cross-Coupling: Synthesis of Ketones. Org Lett 2020; 22:9190-9195. [DOI: 10.1021/acs.orglett.0c03260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
Lin Q, Zhang S, Li B. KO t-Bu-promoted selective ring-opening N-alkylation of 2-oxazolines to access 2-aminoethyl acetates and N-substituted thiazolidinones. Beilstein J Org Chem 2020; 16:492-501. [PMID: 32273909 PMCID: PMC7113552 DOI: 10.3762/bjoc.16.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 01/29/2023] Open
Abstract
An efficient and simple KOt-Bu-promoted selective ring-opening N-alkylation of 2-methyl-2-oxazoline or 2-(methylthio)-4,5-dihydrothiazole with benzyl halides under basic conditions is described for the first time. The method provides a convenient and practical pathway for the synthesis of versatile 2-aminoethyl acetates and N-substituted thiazolidinones with good functional group tolerance and selectivity. KOt-Bu not only plays an important role to promote this ring-opening N-alkylation, but also acts as an oxygen donor.
Collapse
Affiliation(s)
- Qiao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China
| | - Shiling Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China
| |
Collapse
|
20
|
|
21
|
Liu S, Lin Q, Liao C, Chen J, Zhang K, Liu Q, Li B. Ruthenium(ii)/acetate catalyzed intermolecular dehydrogenative ortho C-H silylation of 2-aryl N-containing heterocycles. Org Biomol Chem 2019; 17:4115-4120. [PMID: 30968915 DOI: 10.1039/c9ob00609e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The first application of a RuHCl(CO)(PPh3)3-OAc catalytic system on the selective intermolecular mono C-H silylation of 2-aryl N-heterocycles using HSiEt3 as the silylating reagent has been described. This protocol features good functional group tolerance and high regioselectivity, and has potential for gram scale-up, which provides a convenient and practical pathway for the synthesis of versatile organosilane compounds. This catalytic system can also be applied to the silylation of challenging sp3 C-H bonds.
Collapse
Affiliation(s)
- Shun Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang Y, Lyu X, Song H, Wang Q. Sulfoxonium Ylides as Carbene Precursors: Rhodium(III)‐Catalyzed Sequential C−H Functionalization, Selective Enol Oxygen‐Atom Nucleophilic Addition, and Hydrolysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900861] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuanqiong Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Xueli Lyu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|