1
|
Chen L, Ni Q, Zhou Y, Liu Y. Gold(I)-catalyzed tandem cyclization/peroxidation of 2-alkynyl-1-carbonylbenzenes with TBHP. Org Biomol Chem 2025; 23:3177-3182. [PMID: 40045851 DOI: 10.1039/d5ob00026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
A gold(I)-catalyzed tandem cyclization/peroxidation of 2-alkynyl-1-carbonylbenzenes with tert-butyl hydroperoxide (TBHP) has been successfully developed to access 1-peroxidized 1H-isochromene derivatives in moderate to good yields. The use of one of the resultant 1-peroxidized 1H-isochromenes (3a) for the construction of phenyl(8-phenylbicyclo[4.2.0]octa-1(6),2,4,7-tetraen-7-yl)methanone (4), phenyl(3-phenyl-1,3-dihydroisobenzofuran-1-yl)methanone (5) and 2-(2-benzoylphenyl)-1-phenylethan-1-one (6) has also been investigated, respectively.
Collapse
Affiliation(s)
- Lang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
2
|
Zheng X, Wang M, Sun X, Gao Y, Chen H. Catalyst-free coupling of peroxypyrroloindolenines with amines to afford stable peroxyindolenines. Org Biomol Chem 2025; 23:1215-1218. [PMID: 39711314 DOI: 10.1039/d4ob01736f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here we report a highly efficient method for coupling of peroxypyrroloindolenines with amines under catalyst-free conditions to obtain stable C2-N peroxyindolenines in high yields with remarkable functional group tolerance. Initial studies have shown that compound 13 exhibits potent inhibition of the B16/F10 cell line with an IC50 value of 2.18 μM.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Menghan Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xianbin Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
3
|
Belyakova YY, Radulov PS, Novikov RA, Prolomov IV, Krivoshchapov NV, Medvedev MG, Yaremenko IA, Alabugin IV, Terent'ev AO. FeCl 2-Mediated Rearrangement of Aminoperoxides into Functionalized Tetrahydrofurans: Dynamic Non-innocence of O-Ligands at an Fe Center Coordinates a Radical Cascade. J Am Chem Soc 2025; 147:965-977. [PMID: 39727309 DOI: 10.1021/jacs.4c14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The selective reaction of cyclic aminoperoxides with FeCl2 proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans. Although the aminoperoxide cores undergo multiple bond scissions, this cascade is atom-economical. Computational analysis shows that the O-ligands at the Fe center have enough radical character to promote C-C bond fragmentation and subsequent cyclization. The stereoelectronic flexibility of oxygen, combined with iron's capacity to stabilize multiple reactive intermediates during the multistep cascade, explains the efficiency of this new atom-economic peroxide rearrangement.
Collapse
Affiliation(s)
- Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Ilya V Prolomov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- Mendeleev University of Chemical Technology, Miusskaya Sq. 9, Moscow 125047, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Mohanta N, Samal PP, Pandey AM, Mondal S, Krishnamurty S, Gnanaprakasam B. Catalyst-Assisted Selective Vinylation and Methylallylation of a Quaternary Carbon Center Using tert-Butyl Acetate. J Org Chem 2023. [PMID: 37437127 DOI: 10.1021/acs.joc.2c03072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The In(OTf)3-catalyzed α-vinylation of various hydroxy-functionalized quaternary carbon centers using in situ generated isobutylene from tert-butyl acetate is presented as a novel synthetic methodology. Moreover, tert-butyl acetate is a nonflammable feed stock and is a readily available source for the in situ production of vinyl substituents, as demonstrated by the vinylation reaction with quaternary hydroxy/methoxy compounds. Moreover, an excellent selectivity for methylallylation over vinylation was obtained with Ni(OTf)2 as a catalyst. In the case of peroxyoxindole, methylallyl-functionalized 1,4-benzoxazin-3-one derivatives were formed through the sequential rearrangement of peroxyoxindole followed by the nucleophilic attack by isobutylene. The detailed mechanism for this reaction and rationalization for the selectivity are provided using kinetics and density functional theory studies.
Collapse
Affiliation(s)
- Nirmala Mohanta
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Pragnya Paramita Samal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, Maharashtra411008, India
| | - Akanksha M Pandey
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Shankhajit Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, Maharashtra411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
5
|
Saleh SKA, Hazra A, Hajra S. Regioselective Hydroperoxylation of Aziridines and Epoxides Only with Aqueous Hydrogen Peroxide. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- SK Abu Saleh
- Centre of Biomedical Research Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
| | - Atanu Hazra
- Centre of Biomedical Research Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
| | - Saumen Hajra
- Centre of Biomedical Research Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus Raebareli Road Lucknow 226014 India
| |
Collapse
|
6
|
Pan M, Tong Y, Qiu X, Zeng X, Xiong B. One-pot synthesis of 3-trifluoromethylbenzo[ b][1,4]oxazines from CF 3-imidoyl sulfoxonium ylides with 2-bromophenols. Chem Commun (Camb) 2022; 58:12443-12446. [DOI: 10.1039/d2cc04863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot two-step fashion for the synthesis of 3-trifluoromethyl-1,4-benzoxazines from CF3-imidoyl sulfoxonium ylides and 2-bromophenols via lithium-bromide-promoted O–H insertion of sulfoxonium ylides and annulation has been demonstrated.
Collapse
Affiliation(s)
- Mingshi Pan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
7
|
Shaikh MA, Ubale AS, Gnanaprakasam B. Indium Catalyzed Sequential Regioselective Remote C−H Indolylation and Rearrangement Reaction of Peroxyoxindole. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Moseen A. Shaikh
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| | - Akash S. Ubale
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| | - Boopathy Gnanaprakasam
- Department of Chemistry Indian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
8
|
Ubale AS, Shaikh MA, Gnanaprakasam B. Sequential Oxidative Fragmentation and Skeletal Rearrangement of Peroxides for the Synthesis of Quinazolinone Derivatives. J Org Chem 2021; 86:9621-9636. [PMID: 34232051 DOI: 10.1021/acs.joc.1c00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the first time, the sequential reaction of peroxyoxindole that involves base-promoted oxidative fragmentation to isocyanate formation and primary amine or amino alcohol accelerated skeletal rearrangement to synthesize exo-olefinic-substituted quinazolinone or oxazoloquinazolinone is reported. The advantages of this new reaction include a broad substrate scope and transition-metal-free and room-temperature conditions. The formation of the isocyanate as a key intermediate that accelerates oxidative skeletal rearrangement has been confirmed by trapping experiments and spectroscopic evidence.
Collapse
Affiliation(s)
- Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
9
|
Deng Q, Yu A, Zhang L, Meng X. Selective Synthesis of Benzothiophene‐Fused Polycyclic, Eight‐Membered N‐Heterocycles via Amine‐Mediated Three‐Component Domino Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science, Tianjin Chengjian University Tianjin 300384 People's Republic of China
- College of Chemistry Beijing Normal University Beijing 100875 People's Republic of China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| |
Collapse
|
10
|
Ye F, Liu Q, Cui R, Xu D, Gao Y, Chen H. Diverse Functionalization of Tetrahydro-β-carbolines or Tetrahydro-γ-carbolines via Oxidative Coupling Rearrangement. J Org Chem 2020; 86:794-812. [PMID: 33232143 DOI: 10.1021/acs.joc.0c02351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein diverse functionalization of tetrahydro-β-carbolines (THβCs) or tetrahydro-γ-carbolines (THγCs) via oxidative coupling rearrangement. The treatment of THβCs or THγCs with t-BuOOH (TBHP) afforded 3-peroxyindolenines, followed by HCl catalyzed indolation to form unexpected 2-indolyl-3-peroxyindolenines. Further rearrangement of these peroxides allows for rapid access to a skeletally diverse chemical library in good to excellent yields.
Collapse
Affiliation(s)
- Fu Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qing Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ranran Cui
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
11
|
Radulov PS, Yaremenko IA. Application of BF 3·Et 2O in the synthesis of cyclic organic peroxides (microreview). Chem Heterocycl Compd (N Y) 2020; 56:1146-1148. [PMID: 33144737 PMCID: PMC7595082 DOI: 10.1007/s10593-020-02785-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 10/28/2022]
Abstract
A summary of recent applications of Lewis acid BF3·Et2O as a catalyst in the synthesis of cyclic organic peroxides is presented.
Collapse
Affiliation(s)
- Peter S. Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave, Moscow, 119991 Russia
| | - Ivan A. Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave, Moscow, 119991 Russia
| |
Collapse
|
12
|
Deng Q, Yu A, Zhou J, Cao Q, Meng X. Construction of Benzothiophene or Benzothiopheno[2,3- e]azepinedione Derivatives via Three-Component Domino or One-Pot Sequences. J Org Chem 2020; 85:12270-12283. [PMID: 32883080 DOI: 10.1021/acs.joc.0c01505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient three-component domino or one-pot strategy has been developed for the synthesis of medicinally important benzothiophene and benzothiopheno[2,3-e]azepinedione derivatives for the first time. Amine-promoted selective cleavage of C-S bond of thioisatin is the key step in this process. The reported methodology benefits from environmentally friendly solvent (H2O), wide substrate scope, good functional group tolerance, and high reaction yields.
Collapse
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jie Zhou
- Large Instruments Sharing Service Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qin Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
13
|
Singh K, Kumar P, Jagadeesh C, Patel M, Das D, Saha J. An Approach to α‐ and β‐Amino Peroxides via Lewis Acid Catalyzed Ring Opening‐Peroxidation of Donor‐Acceptor Aziridines and
N
‐Activated Aziridines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kuldeep Singh
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Pramod Kumar
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Chenna Jagadeesh
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Manveer Patel
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| | - Dinabandhu Das
- School of Physical Sciences Jawaharlal Nehru University New Delhi India
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus. Raebareli Road Lucknow 226014 Uttar Pradesh. India
| |
Collapse
|
14
|
Ubale AS, Chaudhari MB, Shaikh MA, Gnanaprakasam B. Manganese-Catalyzed Synthesis of Quaternary Peroxides: Application in Catalytic Deperoxidation and Rearrangement Reactions. J Org Chem 2020; 85:10488-10503. [DOI: 10.1021/acs.joc.0c00837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Akash S. Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moreshwar B. Chaudhari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moseen A. Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
15
|
Wang J, Bao X, Wang J, Huo C. Peroxidation of 3,4-dihydro-1,4-benzoxazin-2-ones. Chem Commun (Camb) 2020; 56:3895-3898. [PMID: 32134057 DOI: 10.1039/c9cc09778c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sp3-C-H peroxidation of 3,4-dihydro-1,4-benzoxazin-2-ones was achieved under mild and simple catalyst-free reaction conditions. A range of biologically important alkylated benzoxazinone peroxides are synthesized in high yield with a good functional group tolerance. The C(sp3)-OO bond was constructed efficiently and could be further converted into C(sp3)-C(sp3), C(sp3)-C(sp2), C(sp3)-C(sp), C-P and C[double bond, length as m-dash]O bonds by late-stage functional group transformations.
Collapse
Affiliation(s)
- Jie Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | |
Collapse
|
16
|
Chaudhari MB, Jayan K, Gnanaprakasam B. Sn-Catalyzed Criegee-Type Rearrangement of Peroxyoxindoles Enabled by Catalytic Dual Activation of Esters and Peroxides. J Org Chem 2020; 85:3374-3382. [DOI: 10.1021/acs.joc.9b03160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Krishna Jayan
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
17
|
Hajra S, Hazra A, Saleh SKA, Mondal AS. Aqueous tert-Butyl Hydroperoxide Mediated Regioselective Ring-Opening Reactions of Spiro-aziridine-epoxy Oxindoles: Synthesis of 3-Peroxy-3-substituted Oxindoles and Their Acid-Mediated Rearrangement. Org Lett 2019; 21:10154-10158. [DOI: 10.1021/acs.orglett.9b04229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saumen Hajra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Atanu Hazra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - SK Abu Saleh
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Ananda Shankar Mondal
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
18
|
Chaudhari MB, Mohanta N, Pandey AM, Vandana M, Karmodiya K, Gnanaprakasam B. Peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow using an eco-friendly ethyl acetate solvent. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00068b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have demonstrated the magnetically retrievable Fe(OH)3Fe3O4catalyzed C–H peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow process for the first time.
Collapse
Affiliation(s)
- Moreshwar B. Chaudhari
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Nirmala Mohanta
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Akanksha M. Pandey
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Madhusoodhanan Vandana
- Department of Biology
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Krishanpal Karmodiya
- Department of Biology
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| | - Boopathy Gnanaprakasam
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Pune
- Pune 411008
- India
| |
Collapse
|