1
|
Shangguan X, Zhu L, Zhang Y, Li Y, Zhang Q. Copper-catalyzed enantioselective three-component radical 1,4-perfluoroalkylamination of 1,3-dienes. Nat Commun 2025; 16:4939. [PMID: 40436850 PMCID: PMC12119825 DOI: 10.1038/s41467-025-60227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 05/19/2025] [Indexed: 06/01/2025] Open
Abstract
Catalytic enantioselective three-component aminative difunctionalization of readily available 1,3-dienes offers a straightforward methodology to fast access significant and complex chiral allylic amines. Nevertheless, compared to the widely studied two-component reactions, the three-component reactions, especially using anilines-very common bulk feedstock chemicals as aminating reagents are underdeveloped. More importantly, the limited examples of enantioselective three-component aminative difunctionalization of 1,3-dienes with anilines only showed 1,2-selectivity; and the corresponding 1,4-regioselectivity remains unknown. Here, we report a copper-catalyzed enantioselective radical three-component 1,4-perfluoroalkylamination of 1,3-dienes with anilines and perfluoroalkyl reagents, efficiently providing an array of valuable perfluoroalkylated chiral allylic amines in good to excellent yields with excellent enantioselectivity. Mechanistic investigations, including controlled experiments and DFT studies, elucidate the origination of the regioselectivity and enantioselectivity, and suggest a radical reaction pathway involving an asymmetric cross-coupling between allylic radical and copper-stabilized nitrogen radical species to construct C-N bond enantioselectively.
Collapse
Affiliation(s)
- Xiaoyan Shangguan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Lihan Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yingzi Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yan Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Wu S, Li M, Lu J, Yang C, Huang Y, Lin A. Enantioselective Synthesis of Hydrindanes via Palladium-Catalyzed Asymmetric Desymmetrization of Cyclohexadiene Derivatives. Org Lett 2025. [PMID: 39907521 DOI: 10.1021/acs.orglett.4c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We herein disclose a strategy for the asymmetric desymmetrization of cyclohexadiene derivatives via a palladium-catalyzed Heck and tandem Heck/Tsuji-Trost allylic alkoxylation reaction. By employing DCE as the solvent, we obtained a variety of chiral hydrindanes containing an all-carbon quaternary carbon center and a tertiary carbon chiral center in good yields with excellent enantioselectivities. With alcohols as the solvent, the valuable chiral hydrindanes with one quaternary stereocenter and two tertiary centers were constructed with a high level of enantioinduction.
Collapse
Affiliation(s)
- Shu Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Miaomiao Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiajun Lu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chi Yang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yue Huang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
3
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025; 147:2675-2688. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Li H, Zhang Y, Han F, Zhang Z, Yin M, Han P, Jing L. Photoredox Catalyzed Tandem Denitrogenative [4 + 2] Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Terminal Olefins. J Org Chem 2024; 89:16043-16048. [PMID: 39402890 DOI: 10.1021/acs.joc.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The dihydroisoquinolones skeleton is ubiquitous in natural products and biological molecules. Reported strategies for constructing dihydroisoquinolones usually require noble metal catalysts or stoichiometric oxidants, which limit their wide applications. Herein, we developed a photoredox catalyzed tandem denitrogenative [4 + 2] annulation reaction of 1,2,3-benzotriazin-4(3H)-ones with terminal olefins. A variety of dihydroisoquinolones can be accessed in moderate to excellent yield. This protocol features high atom-economy, mild reaction conditions, and is external oxidant-free, enabling the synthesis of various substituted dihydroisoquinolones.
Collapse
Affiliation(s)
- Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
- Panzhihua No. 3 Senior High School, Panzhihua 617000, P. R. China
| | - Yu Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Zhengbing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| |
Collapse
|
5
|
Zhu CF, Tian Y, Mai JJ, Shi M, Dong X, Shen D, Shen MH, Xu HD. Cobalt-Catalyzed Synthesis of Alkenyl Heterocycles via Regioselective Intramolecular 1,4-Hydrofunctionalization of Dienes. Org Lett 2024; 26:8260-8266. [PMID: 39321353 DOI: 10.1021/acs.orglett.4c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We report a novel cobalt-catalyzed intramolecular 1,4-hydrofunctionalization of dienes. The reaction proceeds under mild conditions and is amenable to N- and O-nucleophiles. The protocol exhibits exclusive regioselectivity, yielding a number of different alkenyl heterocycles, including but not limited to dihydroisobenzofurans, isochromanes, tetrahydrofurans, morpholines, lactones, and isoindolines. Experimental studies were performed to offer some insight into the different mechanistic pathways and to rationalize the regio- and stereoselectivities of the reaction.
Collapse
Affiliation(s)
- Chi-Fan Zhu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yuan Tian
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jun-Ju Mai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mingyuan Shi
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiasen Dong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Dongping Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
6
|
Huertas-Morales I, Cendón B, Costa D, Mascareñas JL, Gulías M. Assembly of 2-Substituted Tetrahydroquinolines from ortho-Methylbenzenesulfamides and Dienes, Using a C(sp 3)-H Activation/Annulation Sequence. Org Lett 2024; 26:7789-7794. [PMID: 39258816 DOI: 10.1021/acs.orglett.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
1,2,3,4-Tetrahydroquinolines (THQs) are essential structural cores in many natural products and pharmaceutical drugs. Especially relevant are those presenting substitutions at position 2, yet practical methods for their one-step assembly from acyclic precursors are very scarce. Herein, we present a straightforward approach to assembling these skeletons from ortho-methylanilines using a palladium-catalyzed C(sp3)-H activation/formal cycloaddition sequence. Key for the success of the approach is the use of dienes as partners, since they lead to stable π-allyl palladium intermediates that prevent β-hydride elimination processes and allow installation of versatile alkenyl handles at position 2. Moreover, installing a perfluorobenzenesulfonyl substituent at the amine not only facilitates the C-H activation but also allows for an easy recovery of the free amine.
Collapse
Affiliation(s)
- Iván Huertas-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Borja Cendón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Domingo Costa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Wang J, Xu B, Wang Y, Xia G, Zhang ZM, Zhang J. Pd-Catalyzed Enantioselective Three-Component Carboamination of 1,3-Cyclohexadiene. J Am Chem Soc 2024; 146:21231-21238. [PMID: 39074300 DOI: 10.1021/jacs.4c07382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Asymmetric Pd-catalyzed three-component carboamination reactions of dienes to construct chiral cyclohexenylamines, which are of great importance in many fields of chemistry, have remained largely unexplored. Here, we demonstrate a highly enantio- and regioselective Pd/Ming-Phos-catalyzed carboamination reactions of 1,3-cyclohexadiene with readily available aryl iodides and anilines for facile access to diverse valuable chiral cyclohexenylamines. The process shows excellent functional group tolerance, easy scalability, and mild conditions. Moreover, mechanistic studies suggest that this reaction has a first-order dependence on the concentration of the palladium catalyst and aniline.
Collapse
Affiliation(s)
- Jinrong Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
| | - Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, P.R.China
| | - Yibo Wang
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Guangzhen Xia
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Soochow University, Suzhou, Jiangsu 215123, P.R.China
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
- Fudan Zhangjiang Institute, Shanghai, 201203, P.R.China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R.China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, P.R.China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R.China
| |
Collapse
|
8
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
9
|
Qi SS, Sun XP, Sun YB, Zhai JJ, Wang YF, Chu MM, Xu DQ. Synthesis of Chiral Diarylmethylamides via Catalytic Asymmetric Aza-Michael Addition of Amides to ortho-Quinomethanes. J Org Chem 2024. [PMID: 38181049 DOI: 10.1021/acs.joc.3c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Chiral diarylmethylamides are a privileged skeleton in many bioactive molecules. However, the enantioselective synthesis of such molecules remains a long-standing challenge in organic synthesis. Herein, we report a chiral bifunctional squaramide catalyzed asymmetric aza-Michael addition of amides to in situ generated ortho-quinomethanes, affording enantioenriched diarylmethylamides in good yields with excellent enantioselectivities. This work not only provides a new strategy for the construction of the diarylmethylamides but also represents the practicability of amides as nitrogen-nucleophiles in asymmetric organocatalysis.
Collapse
Affiliation(s)
- Suo-Suo Qi
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao-Ping Sun
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yan-Biao Sun
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jing-Jing Zhai
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi-Feng Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ming-Ming Chu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
10
|
Ma X, Malcolmson SJ. Palladium-Catalyzed Regiodivergent Three-Component Alkenylamination of 1,3-Dienes with Alkyl and Aryl Amines. J Am Chem Soc 2023; 145:27680-27689. [PMID: 38054457 PMCID: PMC10802114 DOI: 10.1021/jacs.3c09873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report a palladium-catalyzed method for 4,3- or 4,1-selective alkenylamination of terminal dienes. Three-component couplings proceed with alkenyl triflates and several amines, giving vicinal carboamination with a Xantphos-supported catalyst and distal difunctionalization with a phosphoramidite ligand. A number of constitutionally different disubstituted dienes also participate in regiodivergent carboaminations. Experimental evidence indicates that selectivity in the Xantphos reactions is largely influenced by the substrate, whereas the phosphoramidite-promoted process is catalyst controlled, orchestrated by a key π-stacking interaction among the ligand, solvent, and substrate.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Hu M, Ding H, DeSnoo W, Tantillo DJ, Nairoukh Z. The Construction of Highly Substituted Piperidines via Dearomative Functionalization Reaction. Angew Chem Int Ed Engl 2023; 62:e202315108. [PMID: 37860947 DOI: 10.1002/anie.202315108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Nitrogen heterocycles play a vital role in pharmaceuticals and natural products, with the six-membered aromatic and aliphatic architectures being commonly used. While synthetic methods for aromatic N-heterocycles are well-established, the synthesis of their aliphatic functionalized analogues, particularly piperidine derivatives, poses a significant challenge. In that regard, we propose a stepwise dearomative functionalization reaction for the construction of highly decorated piperidine derivatives with diverse functional handles. We also discuss challenges related to site-selectivity, regio- and diastereoselectivity, and provide insights into the reaction mechanism through mechanistic studies and density functional theory computations.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Hao Ding
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - William DeSnoo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
12
|
Zhang WS, Ji DW, Yang Y, Song TT, Zhang G, Wang XY, Chen QA. Nucleophilic aromatization of monoterpenes from isoprene under nickel/iodine cascade catalysis. Nat Commun 2023; 14:7087. [PMID: 37925506 PMCID: PMC10625535 DOI: 10.1038/s41467-023-42847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
As a large number of organic compounds possessing two isoprene units, monoterpenes and monoterpenoids play important roles in pharmaceutical, cosmetic, agricultural, and food industries. In nature, monoterpenes are constructed from geranyl pyrophosphate (C10) via various transformations. Herein, the bulk C5 chemical-isoprene, is used for the creation of various monoterpenoids via a nucleophilic aromatization of monoterpenes under cascade catalysis of nickel and iodine. Drugs and oil mixtures from conifer and lemon can be convergently transformed to the desired monoterpenoid. Preliminary mechanistic studies are conducted to get insights about reaction pathway. Two types of cyclic monoterpenes can be respectively introduced onto two similar heterocycles via orthogonal C-H functionalization. And various hybrid terpenyl indoles are programmatically assembled from abundant C5 or C10 blocks. This work not only contributes a high chemo-, regio-, and redox-selective transformation of isoprene, but also provides a complementary approach for the creation of unnatural monoterpenoids.
Collapse
Affiliation(s)
- Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
13
|
Wu H, Gui J, Sun M, Ma Y, Yang J, Wang Z. Palladium-Catalyzed C-H Allylation/Annulation Reaction of Amides and Allylic Alcohols: Regioselective Construction of Vinyl-Substituted 3,4-Dihydroisoquinolones. J Org Chem 2023; 88:3871-3882. [PMID: 36864592 DOI: 10.1021/acs.joc.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A palladium-catalyzed highly regioselective C-H allylation/annulation reaction of N-sulfonyl amides with secondary or tertiary allylic alcohols has been developed to construct 3,4-dihydroisoquinolones bearing a synthetically valuable vinyl substituent. This cascade cyclization approach of allylic alcohols involving C-H allylation has not been reported previously. The commercially available allylic alcohol substrates, the only by-product of water, and the used terminal oxidant of O2 provide environmentally benign advantages.
Collapse
Affiliation(s)
- Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jing Gui
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
14
|
Yang JW, Tan GQ, Liang KC, Xu KD, Su M, Liu F. Copper-Catalyzed, N-Directed Distal C(sp 3)-H Functionalization toward Azepanes. Org Lett 2022; 24:7796-7800. [PMID: 36264027 DOI: 10.1021/acs.orglett.2c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report a copper-catalyzed formal [5 + 2] aza-annulation of N-fluorosulfonamides and 1,3-dienes/1,3-enynes for synthesis of structurally diverse alkene/alkyne-containing azepanes. The reaction features selective functionalization of distal unactivated C(sp3)-H bonds and a broad substrate scope, thus allowing the late-stage modification of pharmaceuticals and natural products. A radical mechanism involving 1,5-hydrogen atom transfer of N-radicals, facile coupling of alkyl radicals with 1,3-dienes/1,3-enynes, and the construction of azepane motifs via C-N bond formation is proposed.
Collapse
Affiliation(s)
- Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guang-Qiang Tan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ke-Dong Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
15
|
Murtinho D, Elisa da Silva Serra M. Transition Metal Catalysis in Synthetic Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Barboza AA, Dantas JA, Jardim GADM, Ferreira MAB, Costa MO, Chiavegatti A. Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1701-7397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOver the past years, Pd(II)-catalyzed oxidative couplings have enabled the construction of molecular scaffolds with high structural diversity via C–C, C–N and C–O bond-forming reactions. In contrast to the use of stoichiometric amounts of more common oxidants, such as metal salts (Cu and Ag) and benzoquinone derivatives, the use of molecular oxygen for the direct or indirect regeneration of Pd(II) species presents itself as a more viable alternative in terms of economy and sustainability. In this review, we describe recent advances on the development of Pd-catalyzed oxidative cyclizations/functionalizations, where molecular oxygen plays a pivotal role as the sole stoichiometric oxidant.1 Introduction2 Oxidative C–C and C–Nu Coupling2.1 Intramolecular Oxidative C–Nu Heterocyclization Reactions2.1.1 C–H Activation2.1.2 Wacker/Aza-Wacker-Type Cyclization2.1.3 Tandem Wacker/Aza-Wacker and Cyclization/Cross-Coupling Reactions2.2 Intermolecular Oxidative C–Nu Heterocoupling Reactions2.3 Intramolecular Oxidative (C–C) Carbocyclization Reactions2.4 Intermolecular Oxidative C–C Coupling Reactions2.4.1 Cyclization Reactions2.4.2 Cross-Coupling Reactions2.4.3 Homo-Coupling Reactions3 Aerobic Dehydrogenative Coupling/Functionalization4 Oxidative C–H Functionalization5 Summary
Collapse
|
17
|
Ramesh B, Jeganmohan M. Cobalt(III)-Catalyzed Regio- and Chemoselective [4 + 2]-Annulation of N-Chlorobenzamides/Acrylamides with 1,3-Dienes at Room Temperature. J Org Chem 2022; 87:5713-5729. [PMID: 35414174 DOI: 10.1021/acs.joc.2c00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Co(III)-catalyzed regio- and chemoselective redox-neutral C-H annulation of arylamides/acrylamides with 1,3-dienes is described. The present annulation reaction was well suited with a less-reactive 1,3-butadiene. By employing this protocol, pharmaceutically important 3,4-dihydroisoquinolinones were synthesized in good yields. Furthermore, the prepared 3,4-dihydroisoquinolinones were converted into highly important oxirane derivatives in good yields. A plausible mechanistic cycle is proposed and supported by a competition experiment and kinetic isotopic effect (KIE) studies.
Collapse
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
18
|
Dong L, Yang JH. Rh(III)-Catalyzed Tandem [4+2] Annulation To Construct Functional Dihydroisoquinolinones. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1787-3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA highly efficient Rh(III)-catalyzed tandem [4+2] annulation to construct functional dihydroisoquinolinone derivatives with an alkenyl side chain by insertion into an N–O bond as an internal oxidation process has been achieved. A wide range of 1,3-dienes as the coupling partners makes this simple methodology even more useful.
Collapse
|
19
|
Wu M, Ruan X, Han Z, Gong L. Palladium‐Catalyzed Cascade C−H Functionalization/Asymmetric Allylation Reaction of Aryl α‐Diazoamides and Allenes: Lewis Acid Makes a Difference. Chemistry 2022; 28:e202104218. [DOI: 10.1002/chem.202104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Min‐Song Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Xiao‐Yun Ruan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Zhi‐Yong Han
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
20
|
Wolińska E, Rozbicki P, Branowska D. Chiral pyridine oxazoline and 1,2,4-triazine oxazoline ligands incorporating electron-withdrawing substituents and their application in the Cu-catalyzed enantioselective nitroaldol reaction. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02893-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractEight pyridine-containing and four 1,2,4-triazine-containing chiral oxazoline ligands incorporating electron-withdrawing substituents have been synthesized by two-step route including Buchwald–Hartwig amination. Enantio-inducing activity of the ligands has been assessed in the copper-catalyzed asymmetric nitroaldol reactions and the influence of the electron-withdrawing substituents on the ligands' activity has been investigated.
Graphical abstract
Collapse
|
21
|
Qiu M, Fu X, Fu P, Huang J. Construction of aziridine, azetidine, indole and quinoline-like heterocycles via Pd-mediated C-H activation/annulation strategies. Org Biomol Chem 2022; 20:1339-1359. [PMID: 35044404 DOI: 10.1039/d1ob02146j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Heterocycles can be found in natural products and drug molecules and are indispensable components in the area of organic synthesis, medicinal chemistry and materials science. The construction of these N-containing heterocycles by traditional methods usually requires the preparation of reactive intermediates. In the past decades, with the rapid growth of transition metal catalysed coupling reactions, syntheses of heterocycles from precursors with inert chemical bonds have become a challenge. More recently, in the field of transition metal associated C-H direct functionalization, efficient methods have been developed for the syntheses of N-heterocyclic compounds such as aziridines, azetidines, indoles and quinolines under the click type of reaction mode. In this review, representative synthetic methodologies developed in the recent 10 years for the preparation of this small class of N-heterocycles via the Pd-catalysed C-H activation and C-N bond formation pathway are discussed. We hope this article will provide new insights from the strategies highlighted into future molecular design, synthesis and applications in medical and materials sciences.
Collapse
Affiliation(s)
- Mengyu Qiu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xuegang Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Peng Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
22
|
Huang H, Huang Y, Zou S, Yu B, Yan X, Liu S. Highly Regioselective and Ligand-Controlled Diastereodivergent Aminomethylative Annulation of Dienyl Alcohols Enabled by Hydrogen-Bonding Assisting Effect. Chem Sci 2022; 13:2317-2323. [PMID: 35310502 PMCID: PMC8864680 DOI: 10.1039/d1sc06479g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
A ligand-controlled palladium-catalyzed highly regioselective and diastereodivergent aminomethylative annulation of dienyl alcohols with aminals has been established, which allows for producing either cis- or trans-disubstituted isochromans in good yields with...
Collapse
|
23
|
Liu J, Xiao X, Lai Y, Zhang Z. Recent advances in transition metal-catalyzed heteroannulative difunctionalization of alkenes via C-H activation for the synthesis of heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00081d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are the fundamental structural motifs distributed in natural products, pharmaceuticals and biologically active compounds. Thus, there is increasing interest in the development of novel synthetic strategies for the...
Collapse
|
24
|
Wolińska E, Wysocki W, Branowska D, Karczmarzyk Z. Synthesis and structures of three new pyridine-containing oxazoline ligands of complexes for asymmetric catalysis. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:529-536. [PMID: 34482296 DOI: 10.1107/s2053229621008202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Three new chiral pyridine-containing oxazoline derivatives with fluorine and perfluoromethyl groups, namely, 2-({2-[(4S)-4-phenyl-4,5-dihydro-1,3-oxazol-2-yl]phenyl}amino)-5-(trifluoromethyl)pyridine, C21H16F3N3O, 2-({5-fluoro-2-[(4S)-4-isopropyl-4,5-dihydro-1,3-oxazol-2-yl]phenyl}amino)-5-(trifluoromethyl)pyridine, C18H17F4N3O, and 2-({2-[(3aR,8aS)-8,8a-dihydro-3aH-indeno[1,2-d]oxazol-2-yl]phenyl}amino)-5-(trifluoromethyl)pyridine, C22H16F3N3O, as chiral ligands in metal-catalysed asymmetric reactions, were synthesized and characterized by spectral and X-ray diffraction methods. The conformation of the molecules is influenced by strong N-H...N hydrogen bonding and weak C-H...X (X = O and N) interactions. There are no intermolecular hydrogen bonds in the crystal structures of the analysed compounds. Hirshfeld surface analysis showed that the H...H contacts constitute a high percentage of the intermolecular interactions. The conformational analysis was performed by theoretical calculations using the density functional theory (DFT) method. The mechanism of complex formation in terms of the electron-withdrawing effect of the substituents on the oxazoline ring and the ligand conformation is discussed.
Collapse
Affiliation(s)
- Ewa Wolińska
- Faculty of Science, University of Natural Sciences and Humanities in Siedlce, 3-Maja 54, 08-110 Siedlce, Poland
| | - Waldemar Wysocki
- Faculty of Science, University of Natural Sciences and Humanities in Siedlce, 3-Maja 54, 08-110 Siedlce, Poland
| | - Danuta Branowska
- Faculty of Science, University of Natural Sciences and Humanities in Siedlce, 3-Maja 54, 08-110 Siedlce, Poland
| | - Zbigniew Karczmarzyk
- Faculty of Science, University of Natural Sciences and Humanities in Siedlce, 3-Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
25
|
Ni HQ, Cooper P, Engle KM. Recent advances in palladium-catalyzed (hetero)annulation of C[double bond, length as m-dash]C bonds with ambiphilic organo(pseudo)halides. Chem Commun (Camb) 2021; 57:7610-7624. [PMID: 34278397 DOI: 10.1039/d1cc02836g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Palladium has proven to be effective in catalyzing the (hetero)annulation of C[double bond, length as m-dash]C bonds with ambiphilic organo(pseudo)halides. Through the employment of appropriate ambiphilic coupling partners, efficient annulation of a variety of allenes, 1,3-dienes, strained alkenes, styrenes, and other C[double bond, length as m-dash]C bond variants can be achieved to provide direct access to numerous useful hetero- and carbocyclic scaffolds. In this Feature Article, we summarize palladium-catalyzed (hetero)annulation methods reported since 2005 (spanning just over 15 years) and discuss outstanding challenges in this area of study.
Collapse
Affiliation(s)
- Hui-Qi Ni
- The Scripps Research Institute, Department of Chemistry, 10550 N. Torrey Pines Rd, La Jolla, California, USA.
| | - Phillippa Cooper
- The Scripps Research Institute, Department of Chemistry, 10550 N. Torrey Pines Rd, La Jolla, California, USA.
| | - Keary M Engle
- The Scripps Research Institute, Department of Chemistry, 10550 N. Torrey Pines Rd, La Jolla, California, USA.
| |
Collapse
|
26
|
Wu L, Li L, Zhang H, Gao H, Zhou Z, Yi W. Rh(III)-Catalyzed C-H Activation/[3 + 2] Annulation of N-Phenoxyacetamides via Carbooxygenation of 1,3-Dienes. Org Lett 2021; 23:3844-3849. [PMID: 33870686 DOI: 10.1021/acs.orglett.1c00945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A unique Rh(III)-catalyzed C-H activation/[3 + 2] annulation of N-phenoxyacetamides has been developed for the construction of dihydrobenzofurans via carbooxygenation of 1,3-dienes. This transformation features a redox-neutral process with specific chemoselectivity, good substrate/functional group compatibility, and profound synthetic potentials. A preliminary exploration to realize their asymmetric synthesis have been also successfully demonstrated, which further strengthens the practicality of this approach.
Collapse
Affiliation(s)
- Liexin Wu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Liping Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haiman Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
27
|
Jamshaid S, Devkota S, Lee YR. Catalyst- and Substituent-Controlled Regio- and Stereoselective Synthesis of Indolyl Acrylates by Lewis-Acid-Catalyzed Direct Functionalization of 3-Formylindoles with Diazo Esters. Org Lett 2021; 23:2140-2146. [PMID: 33650877 DOI: 10.1021/acs.orglett.1c00277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A facile and efficient In(OTf)3- and BF3·OEt2-catalyzed direct transformation of 3-formylindoles with diazo esters has been developed for synthesizing diverse and functionalized indolyl acrylates. This one-pot protocol furnishes various (Z)-α-hydroxy-β-indolyl acrylates, (E)-β-(2-alkoxy-2-oxoethoxy)-α-indolyl acrylates, and (Z)-3-hydroxy-2-indolyl acrylates by a catalyst- and substituent-controlled, regio- and stereoselective cascade reaction. The protocol has several advantages, including low loading of the catalyst, mild reaction conditions, broad scope, and high functional group tolerance. The synthesized compounds can be further converted into diversely functionalized materials.
Collapse
Affiliation(s)
- Sana Jamshaid
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Shreedhar Devkota
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
28
|
Li H, Long J, Li Y, Wang W, Pang H, Yin G. Nickel‐Catalyzed Regioselective Arylboration of Conjugated Dienes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haoyang Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Jiao Long
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Yuqiang Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Wang Wang
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Hailiang Pang
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Guoyin Yin
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| |
Collapse
|
29
|
Kim TK, Youn SW. Pd‐Catalyzed
Asymmetric Synthesis of 3,
4‐Dihydroisoquinolinones
From
N
‐Ts‐Benzamides
and 1,
3‐Dienes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tae Kyun Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Science Hanyang University Seoul 04763 Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Science Hanyang University Seoul 04763 Korea
| |
Collapse
|
30
|
Karlinskii BY, Ananikov VP. Catalytic C-H Functionalization of Unreactive Furan Cores in Bio-Derived Platform Chemicals. CHEMSUSCHEM 2021; 14:558-568. [PMID: 33207076 DOI: 10.1002/cssc.202002397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/17/2020] [Indexed: 06/11/2023]
Abstract
C-H functionalization is one of the most convenient and powerful tools in the arsenal of modern chemistry, deservedly nominated as the "Holy Grail" of organic synthesis. A frequent disadvantage of this method is the need for harsh reaction conditions to carry out transformations of inert C-H bonds, which limits the possibility of its use for modifying less stable substrates. Biomass-derived furan platform chemicals, which have a relatively unstable aromatic furan core and highly reactive side chain substituents, are extremely promising and valuable organic molecules that are currently widely used in a variety of research and industrial fields. The high sensitivity of furan derivatives to acids, strong oxidants, and high temperatures significantly limits the use of classical methods of C-H functionalization for their modification. New methods of catalytic functionalization of non-reactive furan cores are urgently required to obtain a new generation of materials with controlled properties and potentially bioactive substances.
Collapse
Affiliation(s)
- Bogdan Y Karlinskii
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
31
|
Achar TK, Maiti S, Jana S, Maiti D. Transition Metal Catalyzed Enantioselective C(sp2)–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03743] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sadhan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
32
|
Sun M, Chen W, Wu H, Xia X, Yang J, Wang L, Shen G, Wang Z. Vinylogous Elimination/C-H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Org Lett 2020; 22:8313-8319. [PMID: 33044826 DOI: 10.1021/acs.orglett.0c02956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A palladium-catalyzed cascade reaction of β'-allenoate adducts with aryl/heteroaryl carboxamides through a vinylogous elimination/C-H functionalization/intramolecular allylation reaction sequence has been developed with high Z stereoselectivity. Various ring-fused dihydropyridinones bearing an α,β-unsaturated ester substituent are obtained. It is the first example of application of the allenoate adducts to C-H functionalization annulations as practical precursors of hard-to-get functionalized electron-deficient 1,3-butadienes. Using air as the terminal oxidant also shows a great advantage in environmental friendliness.
Collapse
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
33
|
Yang P, Zheng C, Nie YH, You SL. Palladium-catalyzed dearomative 1,4-difunctionalization of naphthalenes. Chem Sci 2020; 11:6830-6835. [PMID: 33033598 PMCID: PMC7504896 DOI: 10.1039/d0sc02816a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
A highly diastereoselective dearomatization of naphthalenes via a Pd-catalyzed 1,4-difunctionalization reaction is described. In the presence of a commercially available palladium precursor and ligand, intramolecular dearomative Heck-type insertion provides π-allylpalladium intermediates which are readily captured by a series of nucleophiles in excellent yields (up to 99%). This reaction features mild conditions, broad substrate scope, and useful transformations of the products.
Collapse
Affiliation(s)
- Ping Yang
- State Key Laboratory of Organometallic Chemistry , Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China .
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry , Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China .
| | - Yu-Han Nie
- State Key Laboratory of Organometallic Chemistry , Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China .
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry , Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China .
| |
Collapse
|
34
|
Shing Cheung KP, Kurandina D, Yata T, Gevorgyan V. Photoinduced Palladium-Catalyzed Carbofunctionalization of Conjugated Dienes Proceeding via Radical-Polar Crossover Scenario: 1,2-Aminoalkylation and Beyond. J Am Chem Soc 2020; 142:9932-9937. [PMID: 32406231 DOI: 10.1021/jacs.0c03993] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A photoinduced palladium-catalyzed 1,2-carbofunctionalization of conjugated dienes has been developed. This mild modular approach, which does not require employment of exogeneous photosensitizers and external oxidants, allows for efficient and highly regio- and stereoselective synthesis of a broad range of allylic amines from readily available 1,3-dienes, alkyl iodides, and amines. Employment of O- and C-nucleophiles toward oxyalkylation and dialkylation products was also demonstrated. A putative π-allyl palladium radical-polar crossover path is proposed as a key event in this three-component coupling process. The utility of this protocol is highlighted by its application for derivatization of several amine-containing drugs.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Daria Kurandina
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Tetsuji Yata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
35
|
Velasco-Rubio Á, Varela JA, Saá C. Palladium-Catalyzed [5 + 2] Heteroannulation of Phenethylamides with 1,3-Dienes to Dopaminergic 3-Benzazepines. Org Lett 2020; 22:3591-3595. [DOI: 10.1021/acs.orglett.0c01053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús A. Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
36
|
Sun M, Chen W, Xia X, Shen G, Ma Y, Yang J, Ding H, Wang Z. Palladium-Catalyzed Tandem Dehydrogenative [4 + 2] Annulation of Terminal Olefins with N-Sulfonyl Amides via C–H Activations. Org Lett 2020; 22:3229-3233. [DOI: 10.1021/acs.orglett.0c01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
37
|
Zhu D, Jiao Z, Chi YR, Gonçalves TP, Huang KW, Zhou JS. Asymmetric Three-Component Heck Arylation/Amination of Nonconjugated Cyclodienes. Angew Chem Int Ed Engl 2020; 59:5341-5345. [PMID: 31965664 DOI: 10.1002/anie.201915864] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Substituted cyclohexylamines are becoming increasingly important in drug discovery. Asymmetric Heck insertion/amination of nonconjugated cyclodienes proceeds to give 5-aryl cyclohexenylamines with good enantioselectivity and exclusive trans configurations. Primary and secondary anilines, indoline, and benzylamines are suitable amines. The weakly donating diphosphite Kelliphite forms a deep unsymmetrical pocket, which is essential for stereoselective anti attack of amines.
Collapse
Affiliation(s)
- Daoyong Zhu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhiwei Jiao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Théo P Gonçalves
- KAUST Catalysis Center and Division of Physical Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
38
|
Zhu D, Jiao Z, Chi YR, Gonçalves TP, Huang K, Zhou JS. Asymmetric Three‐Component Heck Arylation/Amination of Nonconjugated Cyclodienes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daoyong Zhu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Zhiwei Jiao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Théo P. Gonçalves
- KAUST Catalysis Center and Division of Physical Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Kuo‐Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School Room F312, 2199 Lishui Road Nanshan District Shenzhen 518055 China
| |
Collapse
|
39
|
Li G, Huo X, Jiang X, Zhang W. Asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes. Chem Soc Rev 2020; 49:2060-2118. [DOI: 10.1039/c9cs00400a] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review article provides an overview of progress in asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes.
Collapse
Affiliation(s)
- Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xieyang Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
40
|
Sun M, Wu H, Xia X, Chen W, Wang Z, Yang J. Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. J Org Chem 2019; 84:12835-12847. [DOI: 10.1021/acs.joc.9b01372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|