1
|
Mu S, Xuan Q, Luo Y, Guo Y, Xu J, Song Q. Synthesis of Polysubstituted Benzo[ b][1,5]naphthyridine via Mn(III)-Mediated Domino Cascade Reactions of Cyclopropanols and 2-(2-Isocyanophenyl)acetonitriles. Org Lett 2025; 27:153-158. [PMID: 39745004 DOI: 10.1021/acs.orglett.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Domino cascade reactions, which can construct multiple bonds in one pot, are efficient methods to synthesize N-heterocycles and other useful skeletons. Herein, we report an expedient synthesis of polysubstituted benzo[b][1,5]naphthyridine via Mn(III)-mediated C-C bond cleavage of cyclopropanols. These reactions were initiated by addition of β-carbonyl radicals, generated from cyclopropyl alcohols in the presence of Mn(III), to 2-(2-isocyanophenyl)acetonitriles to give quinolin-3-amines, which went through intramolecular cyclizations and dehydrogenation to give the final products.
Collapse
Affiliation(s)
- Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Li X, Yuan X, Wu Y, Guo H, Liu Q, Huang S. Synthesis of 3,4,5-Trisubstituted 1,2,4-Triazoles via I 2-Catalyzed Cycloaddition of Amidines with Hydrazones. J Org Chem 2024; 89:5277-5286. [PMID: 38587487 DOI: 10.1021/acs.joc.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A general and practical method for the construction of various 3,4,5-trisubstituted 1,2,4-triazoles via I2-catalyzed cycloaddition of N-functionalized amidines with hydrazones is reported. This strategy features cheap and readily available catalyst and starting materials, broader substrate scope, and moderate-to-good yields. The mechanism study shows that the existence of hydrogen on the nitrogen of hydrazones is crucial for this transformation.
Collapse
Affiliation(s)
- Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Xinyufei Yuan
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Yuting Wu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Honghong Guo
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| |
Collapse
|
3
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
4
|
Matsuoka J, Yano Y, Hirose Y, Mashiba K, Sawada N, Nakamura A, Maegawa T. Elemental Sulfur-Mediated Aromatic Halogenation. J Org Chem 2024; 89:770-777. [PMID: 38113515 DOI: 10.1021/acs.joc.3c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A method for aromatic halogenation using a combination of elemental sulfur (S8) and N-halosuccinimide has been developed. A catalytic quantity of elemental sulfur (S8) with N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) effectively halogenated less-reactive aromatic compounds, such as ester-, cyano-, and nitro-substituted anisole derivatives. No reaction occurred in the absence of S8, underscoring its crucial role in the catalytic activity. This catalytic system was also applicable to aromatic iodination with 1,3-diiodo-5,5-dimethylhydantoin.
Collapse
Affiliation(s)
- Junpei Matsuoka
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuna Yano
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuuka Hirose
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Koushi Mashiba
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Nanako Sawada
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
5
|
Hajizadeh F, Mojtahedi MM, Abaee MS. One-pot four-component synthesis of novel isothiourea-ethylene-tethered-piperazine derivatives. RSC Adv 2023; 13:32772-32777. [PMID: 37942451 PMCID: PMC10629393 DOI: 10.1039/d3ra06678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
An efficient metal-free four-component approach for the synthesis of piperazine derivatives tethered to an isothiourea group through an ethylene link was developed. 1,4-Diazabicyclo[2.2.2]octane (DABCO) salts, generated in situ through the reactions of DABCO with various alkyl bromides, reacted with phenylisothiocyanate (PITC) and amines in a one-pot manner to give the target products. Initially, through two parallel nucleophilic paths, DABCO and the secondary amine adds to the alkyl bromide and PITC, respectively. The process is followed by the combination of the two respective intermediates to produce the final products by forming a new C-S bond with the expense of a C-N bond cleavage. Consequently, various DABCO salts and secondary amines were tolerated well in this protocol to afford the isothiourea-ethylene-tethered-piperazine compounds in good to high yields.
Collapse
Affiliation(s)
- Fatima Hajizadeh
- Organic Chemistry Department, Chemistry and Chemical Engineering Research Center of Iran P.O. Box 14335-186 Tehran Iran
| | - Mohammad M Mojtahedi
- Organic Chemistry Department, Chemistry and Chemical Engineering Research Center of Iran P.O. Box 14335-186 Tehran Iran
| | - M Saeed Abaee
- Organic Chemistry Department, Chemistry and Chemical Engineering Research Center of Iran P.O. Box 14335-186 Tehran Iran
| |
Collapse
|
6
|
Giraldi V, Giunchino F, Casacchia ME, Cantelli A, Lucarini M, Giacomini D. N-Sulfenylation of β-Lactams: Radical Reaction of N-Bromo-azetidinones by TEMPO Catalysis. J Org Chem 2023; 88:14728-14735. [PMID: 37769169 PMCID: PMC10594653 DOI: 10.1021/acs.joc.3c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 09/30/2023]
Abstract
Azetidinones with a sulfenyl group on the β-lactam nitrogen atom show interesting biological activities as antimicrobial agents and enzyme inhibitors. We report in the present study a versatile synthesis of N-sulfenylated azetidinones starting from the corresponding N-bromo derivatives by means of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radical as the catalyst and disulfides. Preparation of N-halo-azetidinones was studied and optimized. The reactivity of N-bromo-azetidinone 2a as a model compound in the presence of TEMPO radical was investigated by NMR and electron paramagnetic resonance (EPR) spectroscopy studies. Optimization of the reaction conditions allowed the access of N-alkylthio- or N-arylthio-azetidinones from 55 to 92% yields, and the method exhibited a good substrate scope.
Collapse
Affiliation(s)
- Valentina Giraldi
- Department
of Chemistry a “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti, 87, Bologna 40129, Italy
| | - Francesco Giunchino
- Department
of Chemistry a “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti, 87, Bologna 40129, Italy
| | - Maria Edith Casacchia
- Department
of Chemistry a “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti, 87, Bologna 40129, Italy
- Department
of Physical and Chemical Sciences, University
of Aquila, Via Vetoio, Coppito, L’Aquila 67100, Italy
| | - Andrea Cantelli
- Department
of Chemistry a “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti, 87, Bologna 40129, Italy
| | - Marco Lucarini
- Department
of Chemistry a “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti, 87, Bologna 40129, Italy
| | - Daria Giacomini
- Department
of Chemistry a “Giacomo Ciamician”, University of Bologna, Via Piero Gobetti, 87, Bologna 40129, Italy
| |
Collapse
|
7
|
Doraghi F, Aledavoud SP, Ghanbarlou M, Larijani B, Mahdavi M. N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations. Beilstein J Org Chem 2023; 19:1471-1502. [PMID: 37799175 PMCID: PMC10548256 DOI: 10.3762/bjoc.19.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
In the field of organosulfur chemistry, sulfenylating agents are an important key in C-S bond formation strategies. Among various organosulfur precursors, N-sulfenylsuccinimide/phthalimide derivatives have shown highly electrophilic reactivity for the asymmetric synthesis of many organic compounds. Hence, in this review article, we focus on the application of these alternative sulfenylating reagents in organic transformations.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Pegah Aledavoud
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghanbarlou
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Meng X, Guo W, Nan G, Li M. Synthesis of pyrrole disulfides via umpolung of β-ketothioamides. Org Biomol Chem 2022; 20:7609-7612. [PMID: 36156622 DOI: 10.1039/d2ob01506d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Na2CO3-promoted reaction of β-ketothioamides (KTAs) and cyanoacetates was developed for the synthesis of pyrrole disulfides using air as a green oxidant. This protocol features a broad substrate scope and mild reaction conditions. Preliminary mechanistic studies indicate that the reaction involves a tandem unusual umpolung of KTAs, N-cyclization, tautomerization and oxidative coupling process.
Collapse
Affiliation(s)
- Xiangrui Meng
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China.
| | - Weisi Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Guangming Nan
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China.
| | - Ming Li
- Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, P. R. China. .,College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
9
|
Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Sun Z, Wang J. One-Pot Synthesis of Cyclic Isothioureas. Synlett 2021. [DOI: 10.1055/a-1580-0899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe one-pot synthesis of cyclic isothioureas is reported. This method provides a straightforward and efficient approach to the synthesis of a broad range of cyclic isothioureas with yields of up to 90% and in quantities of up to 5 g. It is of great value for the preparation of classic organocatalysts, such as benzotetramisole and homobenzotetramisole.
Collapse
|
11
|
Feilner JM, Plangger I, Wurst K, Magauer T. Bifunctional Polyene Cyclizations: Synthetic Studies on Pimarane Natural Products. Chemistry 2021; 27:12410-12421. [PMID: 34213030 PMCID: PMC8457131 DOI: 10.1002/chem.202101926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/10/2022]
Abstract
Polyene cyclizations generate molecular complexity from a linear polyene in a single step. While methods to initiate these cyclizations have been continuously expanded and improved over the years, the majority of polyene substrates are still limited to simple alkyl-substituted alkenes. In this study, we took advantage of the unique reactivity of higher-functionalized bifunctional alkenes. The realization of a polyene tetracyclization of a dual nucleophilic aryl enol ether involving a transannular endo-termination step enabled the total synthesis of the tricyclic diterpenoid pimara-15-en-3α-8α-diol. The highly flexible and modular route allowed for the preparation of a diverse library of cyclization precursors specifically designed for the total synthesis of the tetracyclic nor-diterpenoid norflickinflimiod C. The tetracyclization of three diversely substituted allenes enabled access to complex pentacyclic products and provided a detailed insight into the underlying reaction pathways.
Collapse
Affiliation(s)
- Julian M. Feilner
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Immanuel Plangger
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical ChemistryLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular BiosciencesLeopold-Franzens-University InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
12
|
Arsenyan P, Lapcinska S. Straightforward Functionalization of Sulfur-Containing Peptides via 5- and 6-endo-dig Cyclization Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1343-5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractWe present a simple and convenient method for the generation of sulfenyl electrophiles from peptides containing S–S or S–H bonds by employing N-chlorosuccinimide. The corresponding sulfenyl electrophiles are further utilized in 5- and 6-endo-dig cyclization reactions yielding indolizinium salts, indoles, benzo[b]furans, polyaromatic hydrocarbons (PAHs) and isocoumarins, as well as quinolinones bearing a glutathione moiety. PAH derivatives can be used as selective fluorescent dyes for the visualization of lipid droplets in living cells.
Collapse
|
13
|
Nerdinger S, P. Graczyk P. Lesinurad – There are More Ways than One of Synthesizing the Drug. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Kumar CVS, Holyoke CW, Keller TM, Fleming FF. Asmic Isocyanide [3 + 2] Cascade to Dihydrooxazoles and Dihydroimidazoles. J Org Chem 2020; 85:9153-9160. [PMID: 32639153 DOI: 10.1021/acs.joc.0c01119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The versatile isocyanide building block Asmic, anisylsulfanylmethylisocyanide, reacts with aldehydes and ketones in a BF3·OEt2-mediated condensation to afford thioimidoyl-substituted 2,5-dihydrooxazoles. The condensation is distinguished from related base and transition-metal-catalyzed [3 + 2] processes in proceeding via the condensation of aldehydes and ketones with 2 equiv of an isocyanide followed by a molecular rearrangement that installs four new bonds. BF3·OEt2 mediates an analogous condensation of Asmic with imines to generate N-substituted dihydroimidazoles. Mechanistically, BF3·OEt2 activates the isocyanide to facilitate deprotonation evolving to a zwitterion that traps π-electrophiles in a formal [3 + 2] process. A second deprotonation-condensation with Asmic initiates a structural rearrangement involving a sulfanyl elimination-addition transposition sequence. The resulting dihydrooxazoles and dihydroimidazoles contain a thioimidate that serves as a diversification point for further elaboration.
Collapse
Affiliation(s)
- Chepuri V Suneel Kumar
- Department of Chemistry, Drexel University, 32 South 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Caleb W Holyoke
- Department of Chemistry, Drexel University, 32 South 32nd Street, Philadelphia, Pennsylvania 19104, United States
| | - Taylor M Keller
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennysylvania 19122, United States
| | - Fraser F Fleming
- Department of Chemistry, Drexel University, 32 South 32nd Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Li L, Chen Q, Xu HH, Zhang XH, Zhang XG. DBU-Promoted Demethoxylative Thioannulation of Alkynyl Oxime Ethers with Sulfur for the Synthesis of Bisisothiazole-4-yl Disulfides. J Org Chem 2020; 85:10083-10090. [DOI: 10.1021/acs.joc.0c01334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ling Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qian Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hong-Hui Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
16
|
Yi R, Liu S, Gao H, Liang Z, Xu X, Li N. Iodine-promoted direct thiolation (selenylation) of imidazole with disulfides (diselenide): A convenient and metal-free protocol for the synthesis of 2-arylthio(seleno)imidazole. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|