1
|
Rodriguez AJ, Pokle MS, Barnes GL, Baran PS. 10-Step, Gram-Scale Total Synthesis of (-)-Bipinnatin J. J Am Chem Soc 2025; 147:16781-16785. [PMID: 40327799 DOI: 10.1021/jacs.5c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
A concise, scalable total synthesis of (-)-bipinnatin J is disclosed. Commencing from inexpensive starting materials, this marine diterpenoid was fashioned through a convergent synthesis enabled by Ni-electrocatalytic decarboxylative cross-coupling taking advantage of succinate as an ethylene 2-carbon bridge, a unique halogen dance-Zweifel sequence to access a trisubstituted furan, a Ni-mediated 1,6-conjugate addition, and an asymmetric proton transfer.
Collapse
Affiliation(s)
- Anthony J Rodriguez
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Maithili S Pokle
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Griffin L Barnes
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Chen P, Li R, Zou M, Jia Z. Recent Advances in Synthesis of the Polycyclic Norcembranoid and Cembranoid Diterpenoids. Chemistry 2025:e202500936. [PMID: 40269533 DOI: 10.1002/chem.202500936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
The C19 norcembranoid and C20 cembranoid diterpenoids represent an intriguing class of natural products found in both marine and terrestrial environments. These complexes, with a highly oxygenated state and compact polycyclic structures, have captured the synthetic interests due to their unique bioactivities. Over the past two decades, the total synthesis of these natural products has been a challenging task, driven by their intricate structural features. This review systematically summarizes the recent advances in the total synthesis of various norcembranoid and cembranoid diterpenoids, focusing on their transformations and the latest breakthroughs in this field.
Collapse
Affiliation(s)
- Peng Chen
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
| | - Ruoqi Li
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
| | - Ming Zou
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
| | - Zhenhua Jia
- Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou, 450001, China
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
3
|
Gao X, Shen H, Chen P, Huo L, Li H, Xie X, Zhao G, She X. Construction of the Tetracyclic Skeleton of Polycyclic Norcembranoids Sinudenoids B-D Via Ireland-Claisen Rearrangement. J Org Chem 2025; 90:4776-4780. [PMID: 40111397 DOI: 10.1021/acs.joc.5c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Sinudenoids B-D represent a biologically significant and structurally intricate family of natural products distinguished by their unique [5-5-6-6] tetracyclic skeleton. Herein, we present an efficient strategy for the asymmetric synthesis of their [5-5-6-6] tetracyclic framework. Key features of our approach include a convergent synthetic strategy driven by esterification, a pivotal Ireland-Claisen rearrangement to construct a C11-C12 bond, followed by efficient lactonization and isomerization, and a ring-closing metathesis to complete the [5-5-6-6] tetracyclic skeleton.
Collapse
Affiliation(s)
- Xiaofei Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Hui Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Peng Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Liang Huo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Gaoyuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
4
|
Zhang YP, Du S, Ma Y, Zhan W, Chen W, Yang X, Zhang H. Structure-Unit-Based Total Synthesis of (-)-Sinulochmodin C. Angew Chem Int Ed Engl 2024; 63:e202315481. [PMID: 38009457 DOI: 10.1002/anie.202315481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/28/2023]
Abstract
Herein we report a structure-unit-based asymmetric total synthesis of sinulochmodin C, a norcembranoid diterpenoid bearing a transannular strained ether bridge β-keto tetrahydrofuran moiety. Our synthetic route features an intramolecular double Michael addition to construct stereospecifically the [7,6,5,5] tetracyclic skeleton, a vinylogous hydroxylation/oxidation procedure or a stereospecific epoxide opening/oxidation sequence to establish the γ-keto enone intermediate, a Lewis acid/Brønsted acid mediated transannular oxa-Michael addition to fuse the β-keto tetrahydrofuran moiety, a Mukaiyama hydration/Pd-C hydrogenation to reverse the C1-configuration of the isopropenyl unit, and a bioinspired transformation of sinulochmodin C into scabrolide A.
Collapse
Affiliation(s)
- Yi-Peng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Shufei Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Ying Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Weixin Zhan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
5
|
McArthur G, Abel S, Volpin G, Barber DM. Strategies for the Enantioselective Synthesis of 2‐Isoxazolines and 2‐Isoxazolin‐5‐ones Bearing Fully Substituted Stereocenters**. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Gillian McArthur
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Steven Abel
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Giulio Volpin
- Research and Development, Small Molecules Technologies, Process Research, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - David M. Barber
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
6
|
Truax NJ, Ayinde S, Liu JO, Romo D. Total Synthesis of Rameswaralide Utilizing a Pharmacophore-Directed Retrosynthetic Strategy. J Am Chem Soc 2022; 144:18575-18585. [PMID: 36166374 DOI: 10.1021/jacs.2c08245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A pharmacophore-directed retrosynthetic strategy was applied to the first total synthesis of the cembranoid rameswaralide in order to simultaneously achieve a total synthesis while also developing a structure-activity relationship profile throughout the synthetic effort. The synthesis utilized a Diels-Alder lactonization process, including a rare kinetic resolution to demonstrate the potential of this strategy for an enantioselective synthesis providing both the 5,5,6- and, through a ring expansion, 5,5,7-tricyclic ring systems present in several Sinularia soft coral cembranoids. A pivotal synthetic intermediate, a tricyclic epoxy α-bromo cycloheptenone, displayed high cytotoxicity with interesting selectivity toward the HCT-116 colon cancer cell line. This intermediate enabled the pursuit of three unique D-ring annulation strategies including a photocatalyzed intramolecular Giese-type radical cyclization and a diastereoselective, intramolecular enamine-mediated Michael addition, with the latter annulation constructing the final D-ring to deliver rameswaralide. The serendipitous discovery of an oxidation state transposition of the tricyclic epoxy cycloheptenone proceeding through a presumed doubly vinylogous, E1-type elimination enabled the facile introduction of the required α-methylene butyrolactone. Preliminary biological tests of rameswaralide and precursors demonstrated weak cytotoxicity; however, the comparable cytotoxicity of a simple 6,7-bicyclic β-keto ester, corresponding to the CD-ring system of rameswaralide, to that of the natural product itself suggests that such bicyclic β-ketoesters may constitute an interesting pharmacophore that warrants further exploration.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| | - Safiat Ayinde
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States
| |
Collapse
|
7
|
Abstract
Covering: 1986 to 2020Natural products are an enduring source of chemical information useful for probing biologically relevant chemical space. Toward gathering further structure-activity relationship (SAR) information for a particular natural product, synthetic chemists traditionally proceeded first by a total synthesis effort followed by the synthesis of simplified derivatives. While this approach has proven fruitful, it often does not incorporate hypotheses regarding structural features necessary for bioactivity at the synthetic planning stage, but rather focuses on the rapid assembly of the targeted natural product; a goal that often supersedes the opportunity to gather SAR information en route to the natural product. Furthermore, access to simplified variants of a natural product possessing only the proposed essential structural features necessary for bioactivity, typically at lower oxidation states overall, is sometimes non-trivial from the original established synthetic route. In recent years, several synthetic design strategies were described to streamline the process of finding bioactive molecules in concert with fathering further SAR studies for targeted natural products. This review article will briefly discuss traditional retrosynthetic strategies and contrast them to selected examples of recent synthetic strategies for the investigation of biologically relevant chemical space revealed by natural products. These strategies include: diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS), diverted-total synthesis (DTS), analogue-oriented synthesis (AOS), two-phase synthesis, function-oriented synthesis (FOS), and computed affinity/dynamically ordered retrosynthesis (CANDOR). Finally, a description of pharmacophore-directed retrosynthesis (PDR) developed in our laboratory and initial applications will be presented that was initially inspired by a retrospective analysis of our synthetic route to pateamine A completed in 1998.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76710, USA.
| | | |
Collapse
|
8
|
Hafeman NJ, Loskot SA, Reimann CE, Pritchett BP, Virgil SC, Stoltz BM. The Total Synthesis of (-)-Scabrolide A. J Am Chem Soc 2020; 142:8585-8590. [PMID: 32223255 DOI: 10.1021/jacs.0c02513] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first total synthesis of the norcembranoid diterpenoid scabrolide A is disclosed. The route begins with the synthesis of two chiral pool-derived fragments, which undergo a convergent coupling to expediently introduce all 19 carbon atoms of the natural product. An intramolecular Diels-Alder reaction and an enone-olefin cycloaddition/fragmentation sequence are then employed to construct the fused [5-6-7] linear carbocyclic core of the molecule and complete the total synthesis.
Collapse
Affiliation(s)
- Nicholas J Hafeman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Steven A Loskot
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Christopher E Reimann
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Beau P Pritchett
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Scott C Virgil
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Truax NJ, Ayinde S, Van K, Liu JO, Romo D. Pharmacophore-Directed Retrosynthesis Applied to Rameswaralide: Synthesis and Bioactivity of Sinularia Natural Product Tricyclic Cores. Org Lett 2019; 21:7394-7399. [PMID: 31498642 DOI: 10.1021/acs.orglett.9b02713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pharmacophore-directed retrosynthesis strategy applied to rameswaralide provided simplified precursors bearing the common 5,5,6 (red) and 5,5,7 (blue) skeleton present in several cembranoid and norcembranoids from Sinularia soft corals. Key steps include a Diels-Alder lactonization organocascade delivering the common 5,5,6 core and a subsequent ring expansion affording a 5,5,7 core serviceable for the synthesis of rameswaralide. Initial structure-activity relationships of intermediates en route to the natural product have revealed interesting differential and selective cytotoxicity.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry , Baylor University , Waco , Texas 76710 , United States
| | - Safiat Ayinde
- Department of Pharmacology and Molecular Sciences , John Hopkins School of Medicine , 725 North Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Khoi Van
- Department of Chemistry & Biochemistry , Baylor University , Waco , Texas 76710 , United States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences , John Hopkins School of Medicine , 725 North Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry , Baylor University , Waco , Texas 76710 , United States
| |
Collapse
|