1
|
Hu H, Zhang C, Ma Z, Wang C, Zhao D, Bai Y, Ni X, Wang J. Palladium-catalyzed regioselective carbonylation of 2-amino-2,3-diphenylpropanoate to 5/6-membered benzolactams. Org Biomol Chem 2024; 22:8407-8412. [PMID: 39350651 DOI: 10.1039/d4ob01310g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Five/six-membered benzolactams are significant blocks in both organic and medicinal chemistry. Achieving 5/6-membered benzolactams from the same starting compound under varying reaction conditions presents a significant challenge. Herein, palladium-catalyzed free amine-oriented regioselective C-H activations/carbonylations mediated by hexacarbonylmolybdenum, leading to diverse sizes of benzolactams, respectively, have been developed. Six-membered dihydroisoquinolinones can be obtained selectively in acetic acid using benzoquinone as an oxidant. While unfavorable five-membered isoindolinones were formed in the presence of Cu(II) as an oxidant and dihydrooxazole ligands in 1,2-dichlorobenzene. The substituents on the phenyl ring also had a great influence on the regioselectivity of the reaction. In addition, an asymmetric version of the reaction has also been attempted preliminarily.
Collapse
Affiliation(s)
- Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Can Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Zhehao Ma
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213164, P. R. China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| |
Collapse
|
2
|
Teng MY, Wu YJ, Chen JH, Huang FR, Liu DY, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Carbonylation towards Chiral Isoindolinones. Angew Chem Int Ed Engl 2024; 63:e202318803. [PMID: 38205884 DOI: 10.1002/anie.202318803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.
Collapse
Affiliation(s)
- Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - De-Yang Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
3
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
Tian JS, Xu SW, Bi YH, Cao ZZ, Loh TP. Oxidative Amination of Aldehydes with Amines into α-Amino Ketones. Org Lett 2023. [PMID: 38057263 DOI: 10.1021/acs.orglett.3c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Oxidative amination for the installation of nitrogen functional molecules from nitrogen nucleophiles has always been a very challenging topic in organic synthesis. Here we report a novel conversion of different aldehydes with secondary amines for the synthesis of diversified α-amino ketones. This method can be achieved through oxidative rearrangement of an in situ-generated enamine intermediate promoted by commercially available sodium percarbonate. Furthermore, this one-pot process is also suitable for the functional modification of complex molecules.
Collapse
Affiliation(s)
- Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Shuang-Wen Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Yan-Hang Bi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Zhan-Zhi Cao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University, Singapore 637371
| |
Collapse
|
5
|
Jiang TY, Ke YT, Wu YJ, Yao QJ, Shi BF. Pd(II)-Catalyzed atroposelective C-H olefination: synthesis of enantioenriched N-aryl peptoid atropisomers. Chem Commun (Camb) 2023; 59:13518-13521. [PMID: 37886838 DOI: 10.1039/d3cc04425d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, we reported the synthesis of enantioenriched N-aryl peptoid atropisomers via Pd(II)-catalyzed atroposelective C-H olefination using the easily accessible L-pyroglutamic acid (L-pGlu-OH) as the chiral ligand. A series of optically active N-aryl peptoid atropisomers were obtained in synthetically useful yields with high enantioselectivities.
Collapse
Affiliation(s)
- Tian-Yu Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yi-Ting Ke
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yong-Jie Wu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
6
|
Zhou T, Fan LJ, Chen ZJ, Jiang MX, Qian PF, Hu X, Zhang K, Shi BF. Synthesis of P-Stereogenic Phosphinamides via Pd(II)-Catalyzed Enantioselective C-H Alkynylation. Org Lett 2023; 25:5724-5729. [PMID: 37498884 DOI: 10.1021/acs.orglett.3c01865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
P-Stereogenic phosphinamides represent important structural elements in chiral organocatalysts and bioactive compounds. Herein, we report Pd(II)-catalyzed enantioselective C-H alkynylation using cheap commercially available l-pyroglutamic acid as a chiral ligand. A range of structurally diverse P-stereogenic phosphinamides was prepared in good yields with high enantioselectivities via desymmetrization and kinetic resolution. A tailor-made congested directing group, N-ethyl-N-(3-methylpyridin-2-yl)amino, was crucial for the reactivity.
Collapse
Affiliation(s)
- Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ling-Jie Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Sims HS, Dai M. Palladium-Catalyzed Carbonylations: Application in Complex Natural Product Total Synthesis and Recent Developments. J Org Chem 2023; 88:4925-4941. [PMID: 36705327 PMCID: PMC10127288 DOI: 10.1021/acs.joc.2c02746] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbon monoxide is a cheap and abundant C1 building block that can be readily incorporated into organic molecules to rapidly build structural complexity. In this Perspective, we outline several recent (since 2015) examples of palladium-catalyzed carbonylations in streamlining complex natural product total synthesis and highlight the strategic importance of these carbonylation reactions in the corresponding synthesis. The selected examples include spinosyn A, callyspongiolide, perseanol, schizozygane alkaloids, cephanolides, and bisdehydroneostemoninine and related stemona alkaloids. We also provide our perspective about the recent advancements and future developments of palladium-catalyzed carbonylations.
Collapse
Affiliation(s)
- Hunter S Sims
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
8
|
Tian Q, Yin X, Sun R, Wu X, Li Y. The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
González JM, Vidal X, Ortuño MA, Mascareñas JL, Gulías M. Chiral Ligands Based on Binaphthyl Scaffolds for Pd-Catalyzed Enantioselective C–H Activation/Cycloaddition Reactions. J Am Chem Soc 2022; 144:21437-21442. [DOI: 10.1021/jacs.2c09479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- José Manuel González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xandro Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Angel Ortuño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Guo Y, Huang PF, Xiong BQ, Fan JH, Liu Y. Cu-catalyzed oxidative denitrogenation of 3-aminoindazoles for the synthesis of isoquinolinones. Org Biomol Chem 2022; 20:6844-6853. [PMID: 35968914 DOI: 10.1039/d2ob01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed oxidative dual arylation of active alkenes via the cleavage of two C-N bonds of 3-aminoindazoles is presented for constructing isoquinolinones. Importantly, 3-aminoindazoles are used as efficient arylating agents through a radical process. This method has a good substrate scope and functional group compatibility.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
11
|
Liu W, Wang D, Zhang D, Yang X. Catalytic Kinetic Resolution and Desymmetrization of Amines. Synlett 2022. [DOI: 10.1055/a-1790-3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Optically active amines represent critically important subunits in bioactive natural products and pharmaceuticals, as well as key scaffolds in chiral catalysts and ligands. Kinetic resolution of racemic amines and enantioselective desymmetrization of prochiral amines have proved to be efficient methods to access enantioenriched amines, especially when the racemic or prochiral amines were easy to prepare while the chiral ones are difficult to be accessed directly. In this review, we systematically summarized the development of kinetic resolution and desymmetrization of amines through nonenzymatic asymmetric catalytic approaches in the last two decades.
Collapse
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Donglei Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
12
|
Qiu M, Fu X, Fu P, Huang J. Construction of aziridine, azetidine, indole and quinoline-like heterocycles via Pd-mediated C-H activation/annulation strategies. Org Biomol Chem 2022; 20:1339-1359. [PMID: 35044404 DOI: 10.1039/d1ob02146j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Heterocycles can be found in natural products and drug molecules and are indispensable components in the area of organic synthesis, medicinal chemistry and materials science. The construction of these N-containing heterocycles by traditional methods usually requires the preparation of reactive intermediates. In the past decades, with the rapid growth of transition metal catalysed coupling reactions, syntheses of heterocycles from precursors with inert chemical bonds have become a challenge. More recently, in the field of transition metal associated C-H direct functionalization, efficient methods have been developed for the syntheses of N-heterocyclic compounds such as aziridines, azetidines, indoles and quinolines under the click type of reaction mode. In this review, representative synthetic methodologies developed in the recent 10 years for the preparation of this small class of N-heterocycles via the Pd-catalysed C-H activation and C-N bond formation pathway are discussed. We hope this article will provide new insights from the strategies highlighted into future molecular design, synthesis and applications in medical and materials sciences.
Collapse
Affiliation(s)
- Mengyu Qiu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xuegang Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Peng Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China. .,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, China.,Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
13
|
Abstract
AbstractCarbonylation, one of the most powerful approaches to the preparation of carbonylated compounds, has received significant attention from researchers active in various fields. Indeed, impressive progress has been made on this subject over the past few decades. Among the various types of carbonylation reactions, asymmetric carbonylation is a straightforward methodology for constructing chiral compounds. Although rhodium-catalyzed enantioselective hydroformylations have been discussed in several elegant reviews, a general review on palladium-catalyzed asymmetric carbonylations is still missing. In this review, we summarize and discuss recent achievements in palladium-catalyzed asymmetric carbonylation reactions. Notably, this review’s contents are categorized by reaction type.
Collapse
|
14
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
15
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Wu T, Zhou Q, Tang W. Enantioselective α-Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β'-Diketones. Angew Chem Int Ed Engl 2021; 60:9978-9983. [PMID: 33599064 DOI: 10.1002/anie.202101668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/03/2023]
Abstract
We herein describe the first enantioselective α-carbonylative arylation, providing a diverse set of chiral spiro β,β'-diketones bearing various ring sizes and functionalities in high yields and good to excellent enantioselectivities. Calculations suggest the transformation proceeds through reductive elimination instead of nucleophilic addition pathway.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Qinghai Zhou
- College of Chemistry and Materials Science, Shanghai Normal University, 106 Guilin Road, Shanghai, 200233, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
17
|
Wu T, Zhou Q, Tang W. Enantioselective α‐Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′‐Diketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Qinghai Zhou
- College of Chemistry and Materials Science Shanghai Normal University 106 Guilin Road Shanghai 200233 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
18
|
González JM, Cendón B, Mascareñas JL, Gulías M. Kinetic Resolution of Allyltriflamides through a Pd-Catalyzed C-H Functionalization with Allenes: Asymmetric Assembly of Tetrahydropyridines. J Am Chem Soc 2021; 143:3747-3752. [PMID: 33651598 PMCID: PMC8459456 DOI: 10.1021/jacs.1c01929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioenriched, six-membered azacycles are essential structural motifs in many products of pharmaceutical or agrochemical interest. Here we report a simple and practical method for enantioselective assembly of tetrahydropyridines, which is paired to a kinetic resolution of α-branched allyltriflamides. The reaction consists of a formal (4+2) cycloaddition between the allylamine derivatives and allenes and is initiated by a palladium(II)-catalyzed C-H activation process. Both the chiral allylamide precursors and the tetrahydropyridine adducts were successfully obtained in high yields, with excellent enantioselectivity (up to 99% ee) and selectivity values of up to 127.
Collapse
Affiliation(s)
- José Manuel González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Borja Cendón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Mu QQ, Nie YX, Li H, Bai XF, Liu XW, Xu Z, Xu LW. Catalytic asymmetric oxidative carbonylation-induced kinetic resolution of sterically hindered benzylamines to chiral isoindolinones. Chem Commun (Camb) 2021; 57:1778-1781. [PMID: 33475103 DOI: 10.1039/d0cc07218d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A highly enantioselective kinetic resolution of sterically hindered benzylamines has been achieved for the first time through transition-metal-catalyzed oxidative carbonylation, in which the new KR strategy offered a new approach to afford chiral isoindolinones (er up to 97 : 3) and the origin of chemoselectivity and stereoselectivity was confirmed by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Qiu-Qi Mu
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China, Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Bansode AH, Suryavanshi G. Visible‐Light‐Induced Controlled Oxidation of
N
‐Substituted 1,2,3,4‐Tetrahydroisoquinolines for the Synthesis of 3,4‐Dihydroisoquinolin‐1(2
H
)‐ones and Isoquinolin‐1(2
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ajay H. Bansode
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
21
|
Chen LP, Chen JF, Zhang YJ, He XY, Han YF, Xiao YT, Lv GF, Lu X, Teng F, Sun Q, Li JH. Atroposelective carbonylation of aryl iodides with amides: facile synthesis of enantioenriched cyclic and acyclic amides. Org Chem Front 2021. [DOI: 10.1039/d1qo01147b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unprecedented palladium-catalyzed asymmetric carbonylation of ArI with carbon monoxide (CO) to expand a class of atroposelective cyclic and acyclic amides in good yields with high enantioselectivities has been reported.
Collapse
Affiliation(s)
- Li-Ping Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jiang-Fei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yu-Jiao Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xing-Yi He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu-Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Wei WM, Dong FQ, Zheng RH, Liu YY, Zhao TT, Fang WJ, Qin YD. Theoretical study of the mechanism of palladium-catalyzed hydroaminocarbonylation of styrene with ammonium chloride. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Achar TK, Maiti S, Jana S, Maiti D. Transition Metal Catalyzed Enantioselective C(sp2)–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03743] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sadhan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Guo X, Wu Y, Li G, Xia JB. Redox-Triggered Ruthenium-Catalyzed Remote C–H Acylation with Primary Alcohols. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao Guo
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 21181, China
| | - Yang Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gongqiang Li
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 21181, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
25
|
Chang R, Chen Y, Yang W, Zhang Z, Guo Z, Li Y. Unveiling the Mechanism, Origin of Stereoselectivity, and Ligand-Dependent Reactivity in the Pd(II)-Catalyzed Unbiased Methylene C(sp 3)–H Alkenylation–Aza-Wacker Cyclization Reaction. J Org Chem 2020; 85:13191-13203. [DOI: 10.1021/acs.joc.0c01906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rong Chang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yonglin Chen
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Zhuxia Zhang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| | - Yanrong Li
- Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People’s Republic of China
| |
Collapse
|
26
|
Yao QJ, Xie PP, Wu YJ, Feng YL, Teng MY, Hong X, Shi BF. Enantioselective Synthesis of Atropisomeric Anilides via Pd(II)-Catalyzed Asymmetric C-H Olefination. J Am Chem Soc 2020; 142:18266-18276. [PMID: 33030903 DOI: 10.1021/jacs.0c09400] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atropisomeric anilides have received tremendous attention as a novel class of chiral compounds possessing restricted rotation around an N-aryl chiral axis. However, in sharp contrast to the well-studied synthesis of biaryl atropisomers, the catalytic asymmetric synthesis of chiral anilides remains a daunting challenge, largely due to the higher degree of rotational freedom compared to their biaryl counterparts. Here we describe a highly efficient catalytic asymmetric synthesis of atropisomeric anilides via Pd(II)-catalyzed atroposelective C-H olefination using readily available L-pyroglutamic acid as a chiral ligand. A broad range of atropisomeric anilides were prepared in high yields (up to 99% yield) and excellent stereoinduction (up to >99% ee) under mild conditions. Experimental studies indicated that the atropostability of those anilide atropisomers toward racemization relies on both steric and electronic effects. Experimental and computational studies were conducted to elucidate the reaction mechanism and rate-determining step. DFT calculations revealed that the amino acid ligand distortion is responsible for the enantioselectivity in the C-H bond activation step. The potent applications of the anilide atropisomers as a new type of chiral ligand in Rh(III)-catalyzed asymmetric conjugate addition and Lewis base catalysts in enantioselective allylation of aldehydes have been demonstrated. This strategy could provide a straightforward route to access atropisomeric anilides, one of the most challenging types of axially chiral compounds.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yong-Jie Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ya-Lan Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
27
|
Li Y, Cheng XF, Fei F, Wu TR, Bian KJ, Zhou X, Wang XS. Palladium(II)-catalyzed asymmetric C-H carbonylation to diverse isoquinoline derivatives bearing all-carbon quaternary stereocenters. Chem Commun (Camb) 2020; 56:11605-11608. [PMID: 32869786 DOI: 10.1039/d0cc05219a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantioselective synthesis of tetrahydroisoquinolines bearing an all-carbon quaternary stereogenic center, was achieved via asymmetric C-H activation with high enantioselectivities (up to 93% ee). Fair substrate tolerance was indicated throughout the scope investigation and no evident loss of enantioselectivity was exhibited in late-stage derivatization. This study provides incentives for the construction of diverse chiral isoquinoline derivatives, which are prevalent among pharmaceuticals, natural products, etc.
Collapse
Affiliation(s)
- Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Xiu-Fen Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Fan Fei
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Xin Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| |
Collapse
|
28
|
Gu ZY, Chen J, Xia JB. Pd-catalyzed amidation of 1,3-diketones with CO and azides via a nitrene intermediate. Chem Commun (Camb) 2020; 56:11437-11440. [PMID: 32845951 DOI: 10.1039/d0cc04565a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient Pd-catalyzed amidation of 1,3-diketones has been developed using carbon monoxide and organic azides. This reaction provides a step-economic approach to produce β-ketoamides from readily available compounds under mild ligand-, oxidant-, and base-free conditions. The mechanistic studies showed that the reaction occurred through an in situ generated isocyanate intermediate.
Collapse
Affiliation(s)
- Zheng-Yang Gu
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224003, China
| | | | | |
Collapse
|
29
|
Kulkarni MR, Gaikwad ND. Recent Advances in Synthesis of 3,4‐Dihydroisoquinolin‐1(2
H
)‐one. ChemistrySelect 2020. [DOI: 10.1002/slct.202002131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mahesh R. Kulkarni
- Organic Chemistry Research Centre Department of Chemistry K.R.T. Arts B.H. Commerce and A.M. Science College Gangapur Road Nashik 422 002, MS India
| | - Nitin D. Gaikwad
- Organic Chemistry Research Centre Department of Chemistry K.R.T. Arts B.H. Commerce and A.M. Science College Gangapur Road Nashik 422 002, MS India
| |
Collapse
|
30
|
Wu F, Deraedt C, Cornaton Y, Contreras-Garcia J, Boucher M, Karmazin L, Bailly C, Djukic JP. Making Base-Assisted C–H Bond Activation by Cp*Co(III) Effective: A Noncovalent Interaction-Inclusive Theoretical Insight and Experimental Validation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fule Wu
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Deraedt
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Julia Contreras-Garcia
- Laboratoire de Chimie Théorique UMR 7616 CNRS, Sorbonne Université, Site Jussieu, 4 place Jussieu, 75052 Paris cedex, France
| | - Mélanie Boucher
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de Chimie Le Bel FR 2010, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel FR 2010, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
31
|
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
32
|
|
33
|
Yuan Y, Guo X, Zhang X, Li B, Huang Q. Access to 5H-benzo[a]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-b]indol-6-ols via rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rhodium-catalyzed mono-ortho C–H activation/carbenoid insertion/aldol-type cyclization of 3-aldehyde-2-phenyl-1H-indoles with diazo compounds has been developed.
Collapse
Affiliation(s)
- Yumeng Yuan
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiemin Guo
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| | - Buhong Li
- MOE Key Laboratory of Optoelectronic Science and Technology for Medicine
- Fujian Key Laboratory for Photonics Technology
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials
- College of Chemistry & Materials Science
- Fujian Normal University
- Fuzhou
- P.R. China
| |
Collapse
|
34
|
Liu Z, Zhang W, Guo S, Zhu J. Spiro[indene-1,4'-oxa-zolidinones] Synthesis via Rh(III)-Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3 H)-ones with Alkynes: A Redox-Neutral Approach. J Org Chem 2019; 84:11945-11957. [PMID: 31436097 DOI: 10.1021/acs.joc.9b01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-catalyzed C-H activation synthesis of heterocyclic spiro[4,4]nonanes has persistently witnessed the use of additional stoichiometric transition-metal oxidant when employing C═C bond as the spiro ring closure site. Herein, we have addressed the issue by reporting a redox-neutral strategy for spiro[indene-1,4'-oxa-zolidinones] synthesis via Rh(III)-catalyzed coupling of 4-phenyl-1,3-oxazol-2(3H)-ones with alkynes. The synthesis features a broad substrate scope and high regiospecificity.
Collapse
Affiliation(s)
- Zhongsu Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Shan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
35
|
Fan S, Ding Y, Chen X, Gao Y, Fu L, Li S, Li G. Palladium-Catalyzed C(sp2)–H Olefination of Free Primary and Secondary 2-Phenylethylamines: Access to Tetrahydroisoquinolines. J Org Chem 2019; 84:13003-13012. [DOI: 10.1021/acs.joc.9b01769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuai Fan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Yongzheng Ding
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lei Fu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Xiong Q, Chen H, Zhang T, Shan C, Bai R, Lan Y. On the Mechanism of Palladium‐Catalyzed Unsaturated Bond Transformations: A Review of Theoretical Studies. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qin Xiong
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 China
| | - Chunhui Shan
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational ChemistryChongqing University Chongqing 400030 China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
37
|
|
38
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2‐Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904838] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Fan Teng
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Jian Liu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
| | - Weiming Hu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Shuang Luo
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| | - Qiang Zhu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences No. 19(A) Yuquan Road, Shijingshan District Beijing 100049 China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510005 China
| |
Collapse
|
39
|
Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Enantioselective Synthesis of 2-Oxindole Spirofused Lactones and Lactams by Heck/Carbonylative Cylization Sequences: Method Development and Applications. Angew Chem Int Ed Engl 2019; 58:9225-9229. [PMID: 31074567 DOI: 10.1002/anie.201904838] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 01/16/2023]
Abstract
An efficient one-pot assembly of all-carbon spiro-oxindole compounds from non-oxindole-based materials has been developed through a palladium-catalyzed asymmetric Heck/carbonylative lactonization and lactamization sequence. Diversified spirooxindole γ-and δ-lactones/lactams were accessed in high yields with good to excellent enantioselectivities (up to 99 % ee) under mild reaction conditions. The natural product coixspirolactam A was conveniently synthesized by applying the current methodology, and thus its absolute configuration was elucidated for the first time. Asymmetric synthesis of an effective CRTH2 receptor antagonist has also been demonstrated utilizing this method in the key step.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jian Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
40
|
Ding Y, Fan S, Chen X, Gao Y, Li S, Li G. Ligand Promoted, Palladium-Catalyzed C(sp 2)-H Arylation of Free Primary 2-Phenylethylamines. Org Lett 2019; 21:4224-4228. [PMID: 31120257 DOI: 10.1021/acs.orglett.9b01411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A mono- N-protected amino acid (MPAA) ligand promoted, Pd(II)-catalyzed C(sp2)-H arylation of free primary 2-phenylethylamines using the native NH2 as the directing group has been achieved. This method is compatible with challenging simple primary 2-phenylethylamines bearing α-hydrogen atoms. Application of this protocol in the direct structure modification of the drug molecule amphetamine is also demonstrated.
Collapse
Affiliation(s)
- Yongzheng Ding
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shuai Fan
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350002 , China
| | - Xiaoxi Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
41
|
Yuan SW, Han H, Li YL, Wu X, Bao X, Gu ZY, Xia JB. Intermolecular C-H Amidation of (Hetero)arenes to Produce Amides through Rhodium-Catalyzed Carbonylation of Nitrene Intermediates. Angew Chem Int Ed Engl 2019; 58:8887-8892. [PMID: 31037809 DOI: 10.1002/anie.201903656] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/23/2019] [Indexed: 01/27/2023]
Abstract
Amide bond formation is one of the most important reactions in organic chemistry because of the widespread presence of amides in pharmaceuticals and biologically active compounds. Existing methods for amides synthesis are reaching their inherent limits. Described herein is a novel rhodium-catalyzed three-component reaction to synthesize amides from organic azides, carbon monoxide, and (hetero)arenes via nitrene-intermediates and direct C-H functionalization. Notably, the reaction proceeds in an intermolecular fashion with N2 as the only by-product, and either directing groups nor additives are required. The computational and mechanistic studies show that the amides are formed via a key Rh-nitrene intermediate.
Collapse
Affiliation(s)
- Si-Wen Yuan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hui Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yan-Lin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xueli Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoguang Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zheng-Yang Gu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224003, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
42
|
Yuan S, Han H, Li Y, Wu X, Bao X, Gu Z, Xia J. Intermolecular C−H Amidation of (Hetero)arenes to Produce Amides through Rhodium‐Catalyzed Carbonylation of Nitrene Intermediates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Si‐Wen Yuan
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 China
| | - Hui Han
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 China
| | - Yan‐Lin Li
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 China
| | - Xueli Wu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaoguang Bao
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Zheng‐Yang Gu
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 China
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu ProvinceYancheng Institute of Technology Jiangsu 224003 China
| | - Ji‐Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
43
|
Yuan B, Tang Z, Lin Y, Wang G, Fang L, Guo X, Zhao Y, Xie X, Chen J, He R. Insights into the mechanisms of Cu(i)-catalyzed heterocyclization of α-acyl-α-alkynyl ketene dithioacetals to form 3-cyanofurans: the roles of NH4OAc. NEW J CHEM 2019. [DOI: 10.1039/c9nj04423j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NH4OAc is decomposed into NH3 and HOAc, and both NH3 and HOAc as the proton shuttle can prompt catalytic reactions.
Collapse
|
44
|
Yuan B, Chen J, Xie X, He S, Luo Y, Guo X, Huang H, He R. Insights into the mechanisms of Ag-catalyzed synthesis of CF3-substituted heterocycles via [3+2]-cycloaddition from α-trifluoromethylated methyl isocyanides: effects of DBU and exploration of diastereoselectivity. NEW J CHEM 2019. [DOI: 10.1039/c9nj01033e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The diastereoselectivity of [3+2]-cycloaddition can be reasonably explained by the analysis of steric hindrance using DFT calculations.
Collapse
Affiliation(s)
- Binfang Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Jinyang Chen
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Xiaohua Xie
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Shuhua He
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yafei Luo
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
- Collaborative Innovation Center of Targeted Therapeutics and Innovation
| | - Xiaogang Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Rongxing He
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|