1
|
Grigolato R, Fantoni T, Autuori G, Lattanzi M, Ferrazzano L, Cabri W, Tolomelli A. Electrochemical oxidative CF 3 radical-induced lactonization and etherification of terminal and internal alkenes. RSC Adv 2025; 15:15302-15309. [PMID: 40352397 PMCID: PMC12063074 DOI: 10.1039/d5ra01852h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
Introducing trifluoromethyl (CF3) groups enhances drug candidates' properties, improving metabolic stability and bioavailability. This study reports the electrochemical oxidation of Langlois' reagent for CF3 radical-promoted cyclization, synthesizing functionalized lactones and cyclic ethers from terminal and internal alkenes with good to high yields. Mechanistic insights were supported by cyclic voltammetry, radical scavenger experiments, and DFT calculations. The protocol's efficiency highlights its potential in medicinal chemistry for developing pharmacologically valuable compounds avoiding the use of rare metal electrodes.
Collapse
Affiliation(s)
- Riccardo Grigolato
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Tommaso Fantoni
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Giuseppe Autuori
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Matteo Lattanzi
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Lucia Ferrazzano
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Walter Cabri
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| | - Alessandra Tolomelli
- Tolomelli-Cabri Lab, Center for Chemical Catalysis, Department of Chemistry "Giacomo Ciamician", University of Bologna Via Gobetti 85-40129 Bologna Italy
| |
Collapse
|
2
|
Li H, Cheng W, Lv J, Wang C. Synthesis of 4-Hydroxyindolin-2-ones via Phosphoric Acid-Mediated Annulation of β-Nitrostyrenes with 1,3-Cyclohexanedione. J Org Chem 2024; 89:17789-17793. [PMID: 39531611 DOI: 10.1021/acs.joc.4c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The efficient synthesis of 4-hydroxy-3-arylindolin-2-ones via phosphoric acid-mediated annulation of various β-nitrostyrenes and 1,3-cyclohexanedione is described. This annulation reaction gives a practical method for affording a diverse set of oxindoles, having simple experimentation, readily available starting materials, and very good yields. Additionally, substituted 1,3-cyclohexanediones under the same conditions afforded tetrahydrobenzofuran oxime compounds.
Collapse
Affiliation(s)
- Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Wenzhe Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Jiaman Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
3
|
Derat E, Masson G, Claraz A. Electrochemically-Driven 1,4-Aryl Migration via Radical Fluoromethylation of N-Allylbenzamides: a Straightforward Access to Functionalized β-Arylethylamines. Angew Chem Int Ed Engl 2024; 63:e202406017. [PMID: 38687085 DOI: 10.1002/anie.202406017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
An electrochemical radical Truce Smiles rearrangement of N-allylbenzamides is documented herein. The selective 1,4-aryl migration was triggered by the radical fluoromethylation of the alkene providing a direct route to fluoro derivatives of the highly privileged β-arylethylamine pharmacophore. This practical transformation utilizes readily available starting materials and employs an electrical current to drive the oxidative process under mild reaction conditions. It accommodates a variety of migratory aryl groups with different electronic properties and substitution patterns. Careful selection of the protecting group on the nitrogen atom of the N-allylbenzamide is crucial to outcompete the undesired 6-endo cyclization and achieve high level of selectivity towards the 1,4-aryl migration. DFT calculations support the reaction mechanism and unveil the origin of selectivity between the two competitive pathways.
Collapse
Affiliation(s)
- Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Hashmi SZ, Bareth D, Dwivedi J, Kishore D, Alvi PA. Green advancements towards the electrochemical synthesis of heterocycles. RSC Adv 2024; 14:18192-18246. [PMID: 38854834 PMCID: PMC11157331 DOI: 10.1039/d4ra02812k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Heterocyclic chemistry is a large field with diverse applications in the areas of biological research and pharmaceutical advancement. Numerous initiatives have been proposed to further enhance the reaction conditions to reach these compounds without using harmful compounds. This paper focuses on the recent advances in the eco-friendly and green synthetic procedures to synthesize N-, S-, and O-heterocycles. This approach demonstrates considerable potential in accessing such compounds while circumventing the need for stoichiometric quantities of oxidizing/reducing agents or catalysts containing precious metals. Merely employing catalytic quantities of these substances proves sufficient, thereby offering an optimal means of contributing to resource efficiency. Renewable electricity plays a crucial role in generating environmentally friendly electrons (oxidant/reductant) that serve as catalysts for a series of reactions. These reactions involve the production of reactive intermediates, which in turn allow the synthesis of new chemical bonds, enabling beneficial transformations to occur. Furthermore, the utilization of metals as active catalysts in electrochemical activation has been recognized as an effective approach for achieving selective functionalization. The aim of this review was to summarize the electrochemical synthetic procedures so that the undesirable side reactions can be considerably reduced and the practical potential range of the chemical reactions can be expanded significantly.
Collapse
Affiliation(s)
- Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| | - P A Alvi
- Department of Physical Sciences, Banasthali Vidyapith Banasthali-304022 Rajasthan India
| |
Collapse
|
5
|
Wang WF, Liu T, Cheng YL, Song QH. Visible-light-promoted difluoroamidated oxindole synthesis via electron donor-acceptor complexes. Org Biomol Chem 2024; 22:805-810. [PMID: 38170477 DOI: 10.1039/d3ob01885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Tao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yan-Liang Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
6
|
Zhou X, Wang J, Shen Y, Ma D, Zhao Y, Wu J. Cp 2Fe-Mediated Electrochemical Synthesis of Phosphorylated Oxindoles and Indolo[2,1- a]isoquinolin-6(5 H)-ones. J Org Chem 2023. [PMID: 37990818 DOI: 10.1021/acs.joc.3c02017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
An efficient and environmentally friendly electrochemical synthesis of phosphorylated oxindoles and indolo[2,1-a]isoquinolin-6(5H)-ones mediated by readily available Cp2Fe has been developed, which illustrated a broad substrate scope and diverse functional group compatibility. This protocol featured an external oxidant-free process and was at room temperature, which was proposed to be driven by the anodic oxidation of Cp2Fe.
Collapse
Affiliation(s)
- Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Jian Wang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Yirui Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Dumei Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang 315211, China
| |
Collapse
|
7
|
Wu HZ, Teng ZS, Ke YX, Zou Y, Gao P, Li Y, Zhou CH, Zang ZL. Electrochemical trifluoroalkylation/annulation for the synthesis of CF 3-functionalized tetrahydroquinolines and dihydroquinolinones. Org Biomol Chem 2023; 21:8579-8583. [PMID: 37853839 DOI: 10.1039/d3ob00987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Tuning the electronic structure of protecting groups on the nitrogen atom of substrates has emerged as an effective strategy to achieve the tandem trifluoromethylation/C(sp2)-H annulation using Langlois' reagent as the CF3 source for the electrochemical synthesis of functionalized tetrahydroquinolines and dihydroquinolinones.
Collapse
Affiliation(s)
- Hao-Zeng Wu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Shan Teng
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu-Xin Ke
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu Zou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ping Gao
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yue Li
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
8
|
Zhang D, Chang W, Li Y, Zhan S, Pan J, Cai S, Li N, Yang X, Fang Z. The preparation of difluoromethylated indoles via electrochemical oxidation under catalyst- and oxidant-free conditions. Org Biomol Chem 2023; 21:4440-4444. [PMID: 37183760 DOI: 10.1039/d3ob00516j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A green and efficient electrochemical method for the preparation of difluoromethylated indoles has been developed. In this work, sodium difluoromethanesulfinate (HCF2SO2Na) was used as the fluorinating reagent, and various indole derivatives with difluoromethylation at the C-2 position were obtained in moderate to good yields under catalyst- and oxidant-free conditions. Moreover, this C-2 difluoromethylation protocol is operationally simple, proceeds at room temperature, and can be easily scaled up. Cyclic voltammetry (CV) and control experiments indicated that this transformation may proceed via a radical pathway.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Wenqiao Chang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Yun Li
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Songying Zhan
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Junjie Pan
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Shunhui Cai
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Na Li
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Xiaoqin Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Zhao YS, Huang SJ, Gu YQ, Liu GK. Visible-light photoredox-catalyzed radical aryldifluoromethylation of N-arylacrylamides with S-(difluoromethyl)sulfonium salt. Org Biomol Chem 2023; 21:4013-4017. [PMID: 37128753 DOI: 10.1039/d3ob00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A facile and highly efficient visible-light photoredox-catalyzed protocol for aryldifluoromethylation of acrylamides was developed using S-(difluoromethyl)sulfonium salt as the difluoromethyl source. With this method, pharmaceutically interesting CF2H-containing oxindoles were readily accessed from N-arylacrylamides, and this method featured mild reaction conditions, a broad scope of substrates, good tolerance of functional groups, and good to excellent yields. Control experiments revealed that this protocol proceeded through a difluoromethylation/cyclization cascade process.
Collapse
Affiliation(s)
- Ya-Shi Zhao
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Sheng-Jie Huang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Yuan-Qing Gu
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| | - Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
10
|
Xu Z, Yao J, Zhong K, Lin S, Hu X, Ruan Z. Electrochemical Selenylation of Sulfoxonium Ylides for the Synthesis of gem-Diselenides as Antimicrobials against Fungi. J Org Chem 2023; 88:5572-5585. [PMID: 37083436 DOI: 10.1021/acs.joc.3c00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Organoselenium compounds are important scaffolds in pharmaceutical molecules. Herein, we report metal-free, electrochemical, highly chemo- and regioselective synthesis of gem-diselenides through the coupling of α-keto sulfoxonium ylides with diselenides. The versatility of the electrochemical manifold enabled the selenylation with ample scope and broad functional group tolerance, as well as setting the stage for modification of complex bioactive molecules. Detailed mechanistic studies revealed that the key C-Se bond was constructed using n-Bu4NI as an electrolyte and catalyst through the electrosynthetic protocol. Finally, the desired α-keto gem-diselenides showed excellent antimicrobial activity against Candida albicans, which can be identified as the lead compounds for further exploration.
Collapse
Affiliation(s)
- Zhongnan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Jiwen Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Kaihui Zhong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shuimu Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
11
|
Luan S, Castanheiro T, Poisson T. Electrochemical Difluoromethylation of Electron-Rich Olefins. Org Lett 2023; 25:1678-1682. [PMID: 36867562 DOI: 10.1021/acs.orglett.3c00310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The electrochemical difluoromethylation of electron-rich olefins (enamides and styrene derivatives) is disclosed. The addition of the electrogenerated difluoromethyl radical from the corresponding sodium sulfinate (i.e., HCF2SO2Na) to enamides and styrenes in an undivided cell allowed the formation of a large panel of difluoromethylated building blocks in good to excellent yields (42 examples, 23-87% yields). A plausible unified mechanism was suggested according to control experiments and cyclic voltammetry measurements.
Collapse
Affiliation(s)
- Shinan Luan
- Normandy Univ. INSA Rouen Normandy, UNIROUEN, CNRS COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Castanheiro
- Normandy Univ. INSA Rouen Normandy, UNIROUEN, CNRS COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Poisson
- Normandy Univ. INSA Rouen Normandy, UNIROUEN, CNRS COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
12
|
Cen N, Wang H, Zhou Y, Gong R, Sui D, Chen W. Catalyst-free electrochemical trifluoromethylation of coumarins using CF 3SO 2NHNHBoc as the CF 3 source. Org Biomol Chem 2023; 21:1883-1887. [PMID: 36786673 DOI: 10.1039/d2ob01925f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient electrochemical trifluoromethylation of coumarins using CF3SO2NHNHBoc as the source of the trifluoromethyl group was developed. Under catalyst-free and external oxidant-free electrolysis conditions, a range of 3-trifluoromethyl coumarins were obtained in moderate to good yields. The method could be easily scaled up with moderate efficiency.
Collapse
Affiliation(s)
- Nannan Cen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Han Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - YiCheng Zhou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ruoqu Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Dandan Sui
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China. .,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Aslam S, Sbei N, Rani S, Saad M, Fatima A, Ahmed N. Heterocyclic Electrochemistry: Renewable Electricity in the Construction of Heterocycles. ACS OMEGA 2023; 8:6175-6217. [PMID: 36844606 PMCID: PMC9948259 DOI: 10.1021/acsomega.2c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications in the realm of biological exploration and drug synthesis can be found in heterocyclic chemistry, which is a vast subject. Many efforts have been developed to further improve the reaction conditions to access this interesting family to prevent employing hazardous ingredients. In this instance, it has been stated that green and environmentally friendly manufacturing methodologies have been introduced to create N-, S-, and O-heterocycles. It appears to be one of the most promising methods to access these types of compounds avoiding use of stoichiometric amounts of oxidizing/reducing species or precious metal catalysts, in which only catalytic amounts are sufficient, and it represent an ideal way of contributing toward the resource economy. Thus, renewable electricity provides clean electrons (oxidant/reductant) that initiate a reaction cascade via producing reactive intermediates that facilitate in building new bonds for valuable chemical transformations. Moreover, electrochemical activation using metals as catalytic mediators has been identified as a more efficient strategy toward selective functionalization. Thus, indirect electrolysis makes the potential range more practical, and less side reactions can occur. The latest developments in using an electrolytic strategy to create N-, S-, and O-heterocycles are the main topic of this mini review, which was documented over the last five years.
Collapse
Affiliation(s)
- Samina Aslam
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
- The Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Najoua Sbei
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, EggensteinLeopoldshafen, 76344KarlsruheGermany
| | - Sadia Rani
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Manal Saad
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Aroog Fatima
- Department
of Chemistry, The Women University Multan, Multan60000, Pakistan
| | - Nisar Ahmed
- School
of Chemistry, Cardiff University, Main Building Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
14
|
Tian Y, Zheng L, Wang Z, Li Z, Fu W. Metal-Free Electrochemical Oxidative Difluoroethylation/Cyclization of Olefinic Amides To Construct Difluoroethylated Azaheterocycles. J Org Chem 2023; 88:1875-1883. [PMID: 36669162 DOI: 10.1021/acs.joc.2c02579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new strategy of electrochemical oxidative difluoroethylation to generate difluoroethyl radical with sodium difluoroethylsulfinate (DFES-Na) has been reported for the first time. The method allows quick access to a variety of valuable difluoroethylated azaheterocycles including oxindoles and isoquinoline-1,3-diones via radical tandem difluoroethylation/cyclization in moderate to good yields. The electrochemical cyclopropyldifluoromethylation of N-arylacrylamides also works well using this strategy. Moreover, radical capture and cyclic voltammetry (CV) experiments are also carried out to determine the proposed mechanism.
Collapse
Affiliation(s)
- Yunfei Tian
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Luping Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fuction-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| |
Collapse
|
15
|
Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
16
|
Lv Y, Hou ZW, Wang Y, Li P, Wang L. Electrochemical monofluoroalkylation cyclization of N-arylacrylamides to construct monofluorinated 2-oxindoles. Org Biomol Chem 2023; 21:1014-1020. [PMID: 36602181 DOI: 10.1039/d2ob01883g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical monofluoroalkylation cyclization of N-arylacrylamides to synthesize monofluorinated 2-oxindoles has been developed, which employs common dimethyl 2-fluoromalonate as a monofluoroalkyl radical precursor and obviates the use of prefunctionalized monofluoroalkylation reagents and sacrificial oxidants. A variety of monofluorinated nitrogen-containing heterocyclic compounds were efficiently obtained with satisfactory yields from readily available materials.
Collapse
Affiliation(s)
- Yanxia Lv
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China.
| | - Yi Wang
- The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| |
Collapse
|
17
|
Lodh J, Paul S, Sun H, Song L, Schöfberger W, Roy S. Electrochemical organic reactions: A tutorial review. Front Chem 2023; 10:956502. [PMID: 36704620 PMCID: PMC9871948 DOI: 10.3389/fchem.2022.956502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.
Collapse
Affiliation(s)
- Joyeeta Lodh
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - Shounik Paul
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India
| | - He Sun
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Luyang Song
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis (LSusCat), Johannes Kepler University (JKU), Linz, Austria,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| | - Soumyajit Roy
- Eco-Friendly Applied Materials Laboratory (EFAML), Materials Science Centre, Department of Chemical Sciences, Mohanpur Campus, Indian Institute of Science, Education and Research, Kolkata, West Bengal, India,*Correspondence: Wolfgang Schöfberger, ; Soumyajit Roy,
| |
Collapse
|
18
|
Zeng S, Fang S, Cai H, Wang D, Liu W, Hu X, Ruan Z, Sun P. Selenium‐Electrocatalytic Cyclization of 2‐Vinylanilides towards Indoles of Peptide Labeling. Chem Asian J 2022; 17:e202200762. [DOI: 10.1002/asia.202200762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Shaogao Zeng
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Songlin Fang
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Haiping Cai
- Guangzhou Medical University School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target 511436 Guangzhou CHINA
| | - Dong Wang
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Weiling Liu
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| | - Xinwei Hu
- Guangzhou Medical University School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target 511436 Guangzhou CHINA
| | - Zhixiong Ruan
- Guangzhou Medical University School of Pharmaceutical Sciences Xinzao, Panyu District 511436 Guangzhou CHINA
| | - Pinghua Sun
- Jinan University College of Pharmacy International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education 510632 Guangzhou CHINA
| |
Collapse
|
19
|
Xiang J, Patureau FW. Cross Dehydrogenative Coupling of Chloro‐ and Fluoroalkanes with Methylarenes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jia‐Xiang Xiang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
20
|
Wang S, Feng T, Wang Y, Qiu Y. Recent Advances in Electrocarboxylation with CO2. Chem Asian J 2022; 17:e202200543. [DOI: 10.1002/asia.202200543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Siyi Wang
- China University of Mining and Technology School of Chemical Engineering & Technology CHINA
| | - Tian Feng
- Nankai University College of Chemistry CHINA
| | - Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
21
|
Li P, Yang X, Liu J, Zhang Y, Wang L, Gao Y. Photo‐driven Radical Addition/Cyclization of Biaryl Vinyl Ketones with CF3SO2Na and ArCF2CO2K without an External Photocatalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinhua Li
- Huaibei Normal University Department of Chemistry Dongshan Road 235000 Huaibei CHINA
| | - Xingyu Yang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yicheng Zhang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Lei Wang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Department of chemistry CHINA
| |
Collapse
|
22
|
Wang L, Zhang Y, Zhu T, Wu J. Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF 2H-Containing Dibenzazepines. J Org Chem 2022; 87:7551-7556. [PMID: 35549257 DOI: 10.1021/acs.joc.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced radical difluoromethylarylation via tandem addition-cyclization of alkynes with easily available [bis(difluoroacetoxy)iodo]benzene is accomplished, providing a straightforward and practical route for the construction of difluoromethylated dibenzazepines. Various sensitive functional groups can be compatible under photoinduced conditions. Mechanism investigation reveals that this transformation is initiated by the addition of alkyne with difluoromethyl radical, generated in situ from [bis(difluoroacetoxy)iodo]benzene.
Collapse
Affiliation(s)
- Luoyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
24
|
Du J, Gao D, Zhang D, Lin X, Liu C, Zhu N, Yang Z, He W, Fang Z, Guo K. Electrochemical Oxidative
ortho
‐Selective Trifluoromethylation of
N
‐Arylamides. ChemElectroChem 2022. [DOI: 10.1002/celc.202101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Xinxin Lin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zhao Yang
- College of Engineering China Pharmaceutical University 24 Tongjiaxiang Nanjing 210003 P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 P. R. China
| |
Collapse
|
25
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
26
|
Zhang D, Cai J, Du J, Wang Q, Yang J, Geng R, Fang Z, Guo K. Electrochemical-Oxidation-Promoted Direct N-ortho-Selective Difluoromethylation of Heterocyclic N-Oxides. Org Lett 2022; 24:1434-1438. [PMID: 35166558 DOI: 10.1021/acs.orglett.1c04241] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and green electrochemical N-ortho-selective difluoromethylation method of various quinoline and isoquinoline N-oxides has been developed. In this method, sodium difluoromethanesulfinate (HCF2SO2Na) was used as the source of the difluoromethyl moiety, and various N-ortho-selective difluoromethylation quinoline and isoquinoline N-oxides were obtained in good to excellent yields under a constant current. In addition, the reaction was easy to scale up and maintained a good yield. Preliminary mechanism studies suggested that the reaction undergoes a free-radical addition and hydrogen elimination pathway.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinlin Cai
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinze Du
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Qingdong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Jinming Yang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224002, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China
| |
Collapse
|
27
|
Murtaza A, Qamar MA, Saleem K, Hardwick T, Zia Ul Haq, Shirinfar B, Ahmed N. Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. CHEM REC 2022; 22:e202100296. [PMID: 35103382 DOI: 10.1002/tcr.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Awais Qamar
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kaynat Saleem
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zia Ul Haq
- Chemical Engineering department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
28
|
Wang L, Xie L, Fang Z, Zhang Q, Li D. Tandem trifluoromethylthiolation and cyclization of N-aryl-3-butenamides with AgSCF 3: divergent access to CF 3S-substituted 3,4-dihydroquinolin-2-ones and azaspiro[4,5]dienones. Org Chem Front 2022. [DOI: 10.1039/d2qo00207h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A AgSCF3-mediated tandem trifluoromethylthiolaton and cyclization of N-aryl-3-butenamides was developed. It showed divergent reactivities and enabled the selective syntheses of CF3S-substituted 3,4-dihydroquinolin-2-ones and azaspiro[4,5]dienones. The selectivity was achieved through different...
Collapse
|
29
|
Wang H, Xie Y, Zhou Y, Cen N, Chen W. Catalyst-free, direct electrochemical trifluoromethylation/cyclization of N-arylacrylamides using TfNHNHBoc as a CF3 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Dolbier W, Wei S, Le S, Lei Z, Zhou L, Zhang Z. Difluoromethylarylation of α, β- Unsaturated Amides via a Photocatalytic Radical Smiles Rearrangement. Org Biomol Chem 2022; 20:2064-2068. [DOI: 10.1039/d2ob00186a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalytic Smiles rearrangement, triggered by radical difluoromethylation of conjugated arylsulfonylated amides, was developed to construct both β-difluoromethyl amide and heterocyclic scaffolds selectively. This transformation features mild conditions and broad...
Collapse
|
31
|
Yan ZH, Li WC, Wu YH, Yan QB, Wei ZL, Liao WW. Electrochemical cyclization of N-cyanamide alkenes with CF 3SO 2Na to access C, N-(bis)trifluoromethylated cyclic amidines and related compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical trifluoromethylative cyclization of N-cyanamide alkenes and alkynes is presented, which afforded (bis)-C,N-trifluoromethylated cyclic amidines, azines and amides with selective multiple bond formations in a controllable manner.
Collapse
Affiliation(s)
- Zhi-Hua Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen-Cheng Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu-Heng Wu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qi-Bo Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
32
|
Kaboudin B, Ghashghaee M, Bigdeli A, Farkhondeh A, Eskandari M, Esfandiari H. Recent Advances on the Application of Langlois’ Reagent in Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202103867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mojtaba Ghashghaee
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Akram Bigdeli
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Amir Farkhondeh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mahboobe Eskandari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Hesam Esfandiari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|
33
|
Liu M, Luo ZX, Li T, Xiong DC, Ye XS. Electrochemical Trifluoromethylation of Glycals. J Org Chem 2021; 86:16187-16194. [PMID: 34435785 DOI: 10.1021/acs.joc.1c01318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrates play essential roles in various physiological and pathological processes. Trifluoromethylated compounds have wide applications in the field of medicinal chemistry. Herein, we report a practical and efficient trifluoromethylation of glycals by an electrochemical approach using CF3SO2Na as the trifluoromethyl source and MnBr2 as the redox mediator. A variety of trifluoromethylated glycals bearing different protective groups are obtained in 60-90% yields with high regioselectivity. The successful capture of a CF3 radical indicates that a radical mechanism is involved in this reaction.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
34
|
Thadathil DA, Varghese A, Radhakrishnan KV. The Renaissance of Electro‐Organic Synthesis for the Difunctionalization of Alkenes and Alkynes: A Sustainable Approach. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ditto Abraham Thadathil
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru, Karnataka 560029 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| |
Collapse
|
35
|
Yuan Y, Yang J, Lei A. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Chem Soc Rev 2021; 50:10058-10086. [PMID: 34369504 DOI: 10.1039/d1cs00150g] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative cross-coupling has developed into a robust method for carbon-carbon (C-C), carbon-heteroatom (C-X), and heteroatom-heteroatom (X-Y) bond formation. Despite considerable advances in this field, the traditional oxidative cross-coupling reactions usually employ stoichiometric amounts of chemical oxidants to clean up surplus electrons from substrates to form new chemical bonds. Organic electrosynthesis is recognized as an environmentally benign and particularly powerful synthetic platform. Recent advancements have revealed that radical-involved electrochemical oxidative cross-coupling reactions can be achieved under exogenous-oxidant-free conditions. This tutorial review provides an overview of the most recent developments in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Emphasis is mainly placed on synthetic and mechanistic aspects. We hope that this tutorial review can promote the development of radical chemistry, electrochemistry, and oxidative cross-coupling reactions.
Collapse
Affiliation(s)
- Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Jie Yang
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
36
|
Yang WC, Zhang MM, Sun Y, Chen CY, Wang L. Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF 3: Access to SCF 3-Containing Spiro[5,5]trienones. Org Lett 2021; 23:6691-6696. [PMID: 34474567 DOI: 10.1021/acs.orglett.1c02260] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient strategy for trifluoromethylthiolation and dearomatization of activated alkynes with stable and readily available AgSCF3 has been developed. Reported herein is the unprecedented electrochemical generation of the SCF3 radical in the absence of persulfate for the synthesis of SCF3-containing spiro[5,5]trienones in good yields via a 6-exo-trig radical cyclization.
Collapse
Affiliation(s)
- Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Sun
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cai-Yun Chen
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
37
|
Lin Y, Jin J, Wang C, Wan JP, Liu Y. Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. J Org Chem 2021; 86:12378-12385. [PMID: 34392684 DOI: 10.1021/acs.joc.1c01347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Without employing an external oxidant, the simple synthesis of 3-halochromones and various halogenated electron-rich arenes has been realized with electrode oxidation by employing the simplest sodium halide (NaX, X = Cl, Br, I) as halogen source. This electrochemical method is advantageous for the simple and mild room temperature operation, environmental friendliness as well as broad substrate scope in both C-H bond donor and halogen source components.
Collapse
Affiliation(s)
- Yan Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jun Jin
- BioDuro-Sundia, 233 North FuTe Road, Shanghai200131, People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| |
Collapse
|
38
|
Cheng X, Hasimujiang B, Xu Z, Cai H, Chen G, Mo G, Ruan Z. Direct Electrochemical Selenylation/Cyclization of Alkenes: Access to Functionalized Benzheterocycles. J Org Chem 2021; 86:16045-16058. [PMID: 34328728 DOI: 10.1021/acs.joc.1c01267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A catalyst-free, environmentally friendly, and efficient electrochemical selenylation/cyclization of alkenes has been developed with moderate to excellent yields. This selenylated transformation proceeds smoothly and tolerates a wide range of synthetically useful groups to deliver diverse functionalized benzheterocycles, including iminoisobenzofuran, lactones, oxindoles, and quinolinones. Moreover, the present synthetic route could also be readily scaled up to gram quantity with convenient operation in an undivided cell.
Collapse
Affiliation(s)
- Xiaomei Cheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Balati Hasimujiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Haiping Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Guihong Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R.China
| |
Collapse
|
39
|
Guo Y, Wang R, Song H, Liu Y, Wang Q. Electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. Chem Commun (Camb) 2021; 57:8284-8287. [PMID: 34328164 DOI: 10.1039/d1cc03389a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe a protocol for electrochemical cathode reduction to generate trifluoromethyl radicals. The trifluoromethylation reagent (IMDN-SO2CF3) used in this strategy is inexpensive and easy to obtain, and the reaction can be conducted efficiently without the addition of additional redox reagents. Using this strategy, we achieved electrochemical trifluoromethylation/cyclization for the synthesis of isoquinoline-1,3-diones and oxindoles. This protocol has good functional group tolerance and a broad substrate scope.
Collapse
Affiliation(s)
- Yuanqiang Guo
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | | | |
Collapse
|
40
|
Zhang Y, Ma C, Struwe J, Feng J, Zhu G, Ackermann L. Electrooxidative dearomatization of biaryls: synthesis of tri- and difluoromethylated spiro[5.5]trienones. Chem Sci 2021; 12:10092-10096. [PMID: 34377402 PMCID: PMC8317667 DOI: 10.1039/d1sc02682h] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Radical spirocyclization via dearomatization has emerged as an attractive strategy for the rapid synthesis of structurally diverse spiro molecules. We report the use of electrochemistry to perform an oxidative dearomatization of biaryls leading to tri- and difluoromethylated spiro[5.5]trienones in a user friendly undivided cell set-up and a constant current mode. The catalyst- and chemical oxidant-free dearomatization procedure features ample scope, and employs electricity as the green and sole oxidant.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Chanchan Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| | - Jian Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| |
Collapse
|
41
|
Kisukuri CM, Fernandes VA, Delgado JAC, Häring AP, Paixão MW, Waldvogel SR. Electrochemical Installation of CFH 2 -, CF 2 H-, CF 3 -, and Perfluoroalkyl Groups into Small Organic Molecules. CHEM REC 2021; 21:2502-2525. [PMID: 34151507 DOI: 10.1002/tcr.202100065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis can be considered a powerful and sustainable methodology for the synthesis of small organic molecules. Due to its intrinsic ability to generate highly reactive species under mild conditions by anodic oxidation or cathodic reduction, electrosynthesis is particularly interesting for otherwise challenging transformations. One such challenge is the installation of fluorinated alkyl groups, which has gained significant attention in medicinal chemistry and material science due to their unique physicochemical features. Unsurprisingly, several electrochemical fluoroalkylation methods have been established. In this review, we survey recent developments and established methods in the field of electrochemical mono-, di-, and trifluoromethylation, and perfluoroalkylation of small organic molecules.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Vitor A Fernandes
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - José A C Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Márcio W Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
42
|
Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Chicas-Baños DF, Frontana-Uribe BA. Electrochemical Generation and Use in Organic Synthesis of C-, O-, and N-Centered Radicals. CHEM REC 2021; 21:2538-2573. [PMID: 34047059 DOI: 10.1002/tcr.202100056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
During the last decade several research groups have been developing electrochemical procedures to access highly functionalized organic molecules. Among the most exciting advances, the possibility of using free radical chemistry has attracted the attention of the most important synthetic groups. Nowadays, electrochemical strategies based on these species with a synthetic purpose are published continuously in scientific journals, increasing the alternatives for the synthetic organic chemistry laboratories. Free radicals can be obtained in organic electrochemical reactions; thus, this review reassembles the last decade's (2010-2020) efforts of the electrosynthetic community to generate and take advantage of the C-, O-, and N-centered radicals' reactivity. The electrochemical reactions that occur, as well as the proposed mechanism, are discussed, trying to give clear information about the used conditions and reactivity of these reactive intermediate species.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico.,Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
44
|
Kong R, Fu T, Yang R, Chen D, Liang D, Dong Y, Li W, Wang B. 4‐Nitroanisole Facilitates Proton Reduction: Visible Light‐Induced Oxidative Aryltrifluoromethylation of Alkenes with Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rui Kong
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Tingfeng Fu
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ruihan Yang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Danna Chen
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ying Dong
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong Province 250014 P. R. China
| | - Weili Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| |
Collapse
|
45
|
Maiti D, Mahanty K, De Sarkar S. Manganese-catalyzed Electro-oxidative Azidation-annulation Cascade to Access Oxindoles and Quinolinones. Chem Asian J 2021; 16:748-752. [PMID: 33636034 DOI: 10.1002/asia.202100121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Indexed: 12/30/2022]
Abstract
An environmentally benign and proficient electro-oxidative tandem azidation-radical cyclization strategy is reported. Manganese-catalyzed electrochemical reaction in an undivided cell at room temperature and the use of NaN3 as the cheapest azide source are the key features of this protocol. Using this approach, a series of oxindole and quinolinone derivatives are synthesized in high yields. The synthesized azide functionality was efficiently converted to various valuable derivatives.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Kingshuk Mahanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
46
|
Li Y, Huang Z, Mo G, Jiang W, Zheng C, Feng P, Ruan Z. Direct Electrochemical Synthesis of
Sulfur‐Containing
Triazolium Inner Salts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhixing Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Chengwei Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Pengju Feng
- Department of Chemistry, Jinan University Guangzhou Guangdong 510632 China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
47
|
|
48
|
Yuan X, Cui Y, Zhang X, Qin L, Sun Q, Duan X, Chen L, Li G, Qiu J, Guo K. Electrochemical Tri‐ and Difluoromethylation‐Triggered Cyclization Accompanied by the Oxidative Cleavage of Indole Derivatives. Chemistry 2021; 27:6522-6528. [DOI: 10.1002/chem.202005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Guigen Li
- Institute of Chemistry & Biomedical Science Nanjing University No.163, Xianlin Avenue, Qixia District Nanjing 210093 P. R. China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409-1061 USA
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu Rd S Nanjing 211816 P. R. China
| |
Collapse
|
49
|
Lu K, Lei L, Wei Q, Zhou T, Jia X, Li Q, Zhao X. Visible-light induced radical aryldifluoromethylation of N-arylacrylamides by [bis(difluoroacetoxy)iodo]benzene. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
|